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Abstract—Advancements in distributed ledger technologies are
rapidly driving the rise of decentralized crowdsourcing systems
on top of open smart contract platforms like Ethereum. While de-
centralized blockchain-based crowdsourcing provides numerous
benefits compared to centralized solutions, current implemen-
tations of decentralized crowdsourcing suffer from fundamental
scalability limitations by requiring all participants to pay a small
transaction fee every time they interact with the blockchain. This
increases the cost of using decentralized crowdsourcing solutions,
resulting in a total payment that could be even higher than
the price charged by centralized crowdsourcing platforms. This
paper proposes a novel suite of protocols called NF-Crowd that
resolves the scalability issue by reducing the lower bound of
the total cost of a decentralized crowdsourcing project to O(1).
NF-Crowd is a highly reliable solution for scaling decentralized
crowdsourcing. We prove that as long as participants of a project
powered by NF-Crowd are rational, the O(1) lower bound of
cost could be reached regardless of the scale of the crowd. We
also demonstrate that as long as at least one participant of a
project powered by NF-Crowd is honest, the project cannot
be aborted and the results are guaranteed to be correct. We
design NF-Crowd protocols for a representative type of project
named crowdsourcing contest with open community review (CC-
OCR). We implement the protocols over the Ethereum official
test network. Our results demonstrate that NF-Crowd protocols
can reduce the cost of running a CC-OCR project to less than
$2 regardless of the scale of the crowd, providing a significant
cost benefit in adopting decentralized crowdsourcing solutions.

I. INTRODUCTION

In the recent years, crowdsourcing has been gaining at-
tention as a promising modern business model that enables
individuals and organizations to receive services from a large
group of people or crowd. Crowdsourcing services support
a variety of tasks ranging from software development to
logo designs [7]. For example, LEGO Ideas is attracting
a lot of fan designers to enter prize contests by submitting
original proposals for new LEGO Ideas sets. A few top-
ranked proposals in the contest have resulted in successful
commercialization [22]. Likewise, since 2005, UNIQLO has
continuously held annual Global T-Shirt Design Competitions
(UTGP) and its 14th UTGP in 2019 has attracted over 18,000
entries from all over the world [8]. The increasing popu-
larity of crowdsourcing solutions is also driving the rise of
crowdsourcing intermediate platforms such as Upwork [33],
99designs [1] and designContest [11] that connect
business clients to designers including individual freelancers
and design agencies. For instance, via designContest, a
startup company may set up a logo design contest with a

description of its requirements and include a monetary reward.
After receiving a large number of entries from interested
designers, the client may invite its target audience such as its
followers on Twitter to vote for the favorite design and finally
pick one or multiple winning entries based on the voting result.
Nearly all such crowdsourcing intermediate platforms make
profits by charging fees from clients and designers. Upwork
reported in second quarter 2019 that its Gross Services Volume
(GSV) grew 20% year-over-year to $518.8 million [23]. On a
$500 crowdsourcing project in Upwork, the platform would
charge $100 as the service fee. Similarly, 99designs would
charge $75 from a $500 project as the platform fee. Such
high service fees significantly increase the cost of running
crowdsourcing projects online. Clients and designers have no
choice but accept it as the mutually distrusted parties need
a trustworthy intermediary for avoiding dishonest behaviors
such as free-riding and false-reporting [39].

Recent advancements in blockchain technology have led to
the development of numerous open smart contract platforms
including Ethereum [4], [36]. Ethereum has become a promis-
ing technology for decentralizing traditional centralized online
services and as result, in the recent years, we have witnessed
a rapid proliferation of numerous decentralized applications
including decentralized crowdsourcing systems [5], [14], [18],
[26], [27], [34], [38]. Such services offer clients and designers
an option to reduce the high intermediary fee required in
centralized crowdsourcing systems. However, blockchains pro-
vide tamper resistance properties only at a cost. For example,
Ethereum charges each transaction a small fee based on the
complexity. In Ethereum, tens of thousands of miners follow
the Proof-of-Work (PoW) consensus protocol [29] to compete
for solving puzzles and each winner receives a monetary
reward for packaging the recent transactions (i.e., transferring
fund, executing functions or creating smart contracts) into
a new block appended to the end of the blockchain. Fees
charged from transactions within a new block in the blockchain
are paid to the competition winner who packages the block.
People trust that no one can tamper with the blockchain as
the probability of a single miner to win in several consecutive
competitions to be able to change the network consensus about
the blockchain state is negligible. As part of the competition
reward, transaction fees help incentivize miners to invest more
computation resources into the competitions, which in turn in-
creases the difficulty of competitions and improves the overall
safety of the blockchain. Also, transaction fees help protect



Ethereum against DDoS and Sybil attacks [13] as the cost of
creating n transactions will have a cost of O(n). Despite their
significance to the safety of Ethereum, transaction fees turn
out to be an obstacle to existing decentralized crowdsourcing
systems, especially when crowdsourcing projects are scaled
up. Consider that a client sets up a decentralized design contest
in Ethereum, where each entry needs to be submitted by
a designer via a transaction that costs a small fee, say $1.
The total fee charged in this contest would be cheaper than
a contest in 99designs only when there are less than 75
entries. In other words, intermediary fees are not eliminated
by decentralizing crowdsourcing but are paid to a decentralized
infrastructure instead of a centralized service provider for the
same purpose of acquiring trust. As a result, it is not surprising
to see that sometimes there may be no considerable economic
advantage in decentralizing crowdsourcing. For example, if we
take the price of ether 1 as its mean value during the first half
of the year 2019 recorded in Etherscan [17], a crowdsourced
image tagging task completed via CrowdBC [26] could very
well spend over four times the price charged by the centralized
Amazon Mechanical Turk [32]. Similarly, aggregating data
from 1,000 providers via decentralized crowdsensing [14]
could cost up to $170.

This paper aims at addressing the challenging question:
how to provide a reliable solution that decouples the cost of
decentralizing crowdsourcing from the scale of the crowd?
Our research illustrates that the root cause of the high cost
in existing decentralized crowdsourcing systems is the lack of
cost-efficient solutions to exploit decentralized trust. Crowd-
sourcing projects usually involve steps that aggregate data (i.e.,
contest entries or sensed data) from the crowd of scale n
or perform calculations on aggregated data (i.e., determine
winning entries based on votes). Such steps become cost-
intensive in smart contract platforms like Ethereum as they
either charge accumulated small transaction fees (TYPE n×1)
or a single large transaction fee (TYPE 1×n), both resulting in
O(n) cost. In this paper, we propose a novel suite of protocols
called NF-Crowd that reliably resolves the scalability issue
by reducing the lower bound of the total cost of a decentralized
crowdsourcing project to O(1). We prove that as long as
participants of a project powered by NF-Crowd are rational,
the O(1) lower bound of cost could be reached regardless of
the scale of the crowd. We also demonstrate that as long as
at least one participant of a project powered by NF-Crowd
is honest, the project cannot be aborted and the results are
guaranteed to be correct. We design NF-Crowd protocols for
a representative type of project named crowdsourcing contest
with open community review (CC-OCR). We implement the
protocols over the Ethereum official test network. Our results
demonstrate that NF-Crowd protocols can reduce the cost
of running a CC-OCR project to less than $2 regardless of
the scale of the crowd, providing a significant cost benefit in
adopting decentralized crowdsourcing solutions.

The rest of this paper is organized as follows: We start

1 The native cryptocurrency in Ethereum, denoted by Ξ.

by introducing preliminaries in Section II. In Section III,
we present a strawman protocol for CC-OCR projects and
categorize the cost-intensive steps resulting in O(n) cost.
Then, in Section IV, we propose the NF-Crowd protocol
for CC-OCR projects that reduces the lower bound of cost to
O(1). We implement and evaluate the NF-Crowd protocols
over the Ethereum official test network in Section V. Finally,
we discuss related work in Section VI and conclude in
Section VII.

II. PRELIMINARIES

In this section, we discuss the preliminaries about smart
contracts and introduce the key assumptions, key crypto-
graphic tools and notations used in our work. Though we
discuss smart contracts in the context of Ethereum [36], our
solutions are applicable to a wide range of other smart contract
platforms as well.

A. Account types

There are two types of accounts in Ethereum, namely
External Owned Accounts (EOAs) and Contract Accounts
(CAs). To interact with the Ethereum blockchain, a user needs
to create an EOA and control it via a pair of keys. Specifically,
the public key can generate a 20-byte address to uniquely
identify the EOA and the private key can be used by the user
to sign transactions or other types of messages. Then, any user
can create a smart contract by sending out a contract creation
transaction from a controlled EOA. The 20-byte address of
the created smart contract becomes the unique identity of the
contract account (CA).

B. Transactions

The state of Ethereum blockchain can only be changed
by the external world (i.e., EOAs) using transactions. A
transaction is a serialized binary message sent from an EOA
(i.e., sender) that contains the following elements:
• nonce: a sequence number issued by the EOA (i.e.,

transaction creator) to prevent transaction replay;
• gas price: the price of gas the EOA is willing to pay;
• gas limit: the maximum amount of gas the EOA can

afford;
• recipient: the recipient account address;
• value: the amount of ether to send to the recipient;
• data: the binary data payload;
• vrs: the ECDSA digital signature of the EOA.
Depending on the value at recipient (i.e., EOA or CA or

0x0), transactions can be classified into three categories.
Fund transfer transaction: A transaction with an EOA as
recipient and a non-empty value is a fund transfer transaction,
which is used to transfer an amount of ether from the sender
EOA to the recipient EOA. On the other hand, data carried
by a transaction is usually ignored by Ethereum clients and
wallets that help users control their EOAs.
Function invocation transaction: When a transaction in-
volves a CA as recipient as well as a non-empty data,
it is usually a function invocation transaction for calling a



function within an existing smart contract. Specifically, when
the transaction is used to call a function with arguments, such
as:

f u n c t i o n f ( u i n t arg1 , u i n t a rg2 ) p u b l i c {}

the data payload of the transaction would be in the form of

encode(‘f(uint256, uint256)′)|encode( arg1)|encode( arg2)

namely concatenation of the encoded string
“f(uint256, uint256)”, also called as function selector,
and the encoded values for all function arguments. When
a function invocation transaction additionally carries a
non-empty value and the invoked function is marked payable
such as:

f u n c t i o n withdraw ( u i n t amount ) p u b l i c payable {}

The amount of ether indicated by value would be transferred
from the sender EOA to the recipient CA.
Contract creation transaction: In Ethereum, there is a special
type of transaction for creating new smart contracts. Such a
transaction, usually referred to as a contract creation transac-
tion, carries a special recipient address 0x0, an empty value
and a non-empty data payload. A smart contract (or contract)
in Ethereum is a piece of program created using a high-level
contract-oriented programming language such as Solidity [31].
After compiling into a low-level bytecode language called
Ethereum Virtual Machine (EVM) code, the created contract is
filled into a contract creation transaction as the data payload.

A user, after filling recipient, value and data of a transaction,
will then input nonce, gas price and gas limit and finally sign
the transaction with the private key of the sender EOA to get
signature vrs. After that, a complete transaction is created.
To make the transaction get executed to change the state of
the Ethereum blockchain, the transaction should be broadcast
to the entire Ethereum network formed by tens of thousands
of miner nodes. Following the Proof-of-Work (PoW) consen-
sus protocol [29], miners in Ethereum competitively solve
a blockchain puzzle and the winner packages the received
transactions into a block and appends the new block to the end
of Ethereum blockchain. From then on, it is hard to tamper
with the blockchain state updated by the transaction (i.e.,
transferred fund, executed function or created contract). Thus,
transactions and smart contracts in Ethereum are executed
transparently in a decentralized manner and the results are
deterministic.

C. Transaction fees

In order to either deploy a new contract or call a deployed
contract in Ethereum, one needs to spend Gas, or transaction
fees. Based on the complexity of the contract or that of the
called function, an amount of ether needs to be spent to
purchase an amount of Gas as a transaction fee, which is then
paid to the winning miner. The Gas system is important for
Ethereum as it helps to incentivize miners to stay honest, to
nullify denial-of-service attacks and to encourage efficiency
in smart contract programming. On the other hand, the Gas
system requires protocols, especially the multi-party ones, to

TABLE I: Summary of notations.
notation description

C a client who sets up a design contest
D a designer who wants to win a reward
R a reviewer who casts vote to entries
S a smart contract

S.f() function f() within contract S
⇒ broadcast information via off-chain channels
99K transmit infomation via private off-chain channels
⇒ invoke a function within a smart contract

addr (∗) an address of an EOA or a CA
keccak (∗) a keccak hash value

ipfs (∗) a content-addressed IPFS link

be designed with higher scalability in Ethereum. This is due
to the fact that even a single-round multi-party protocol could
spend a lot of money to run in case of a large number of
participants.

D. Off-chain channels

In Ethereum, nodes forming the underlying P2P network can
send messages to each other via off-chain channels established
through the Whisper protocol [35]. By default, messages are
broadcast to the entire P2P network. A node can set up
a filter to only accept messages marked with a specific 4-
byte topic. Besides, a node can locally generate a pair of
asymmetric Whisper keys and reveal the public Whisper key
to the blockchain, which allows other nodes to privately
communicate with it.

E. Key assumptions
We make the following key assumptions in this paper:

• We assume that the underlying blockchain system satisfies
liveness, consistency and immutability properties [19].

• We also make the synchrony assumption that ensures that
there exists a known upper bound on the delay of messages.

• Finally, we assume that at least one reviewer is honest.

F. Cryptographic tools

The design of NF-Crowd protocols employs several key
cryptographic tools: (1) we use a standard notion of Merkle
trees and denote the function of getting the Merkle root
of a tree as root ← merkleRoot(elements). (2) we use
the Keccak 256-bit hash function supported by Ethereum
and it is denoted as keccak(∗). (3) we use the ECDSA
signature supported by Ethereum. Specifically, a EOA (i.e.,
signer) can sign any message via JavaScript API and get
signature vrs ← sig(keccak(message)). Later, other EOAs
or CAs can recover the address of the signer EOA (i.e.
addr(signer)) via JavaScript API or Solidity native function
and get addr(signer) ← vf(keccak(message), vrs). (4)
we use a distributed file system named InterPlanetary File
System (IPFS) [3] to cost-efficiently store data to Ethereum
blockchain. Specifically, instead of paying a large transaction
fee to store a large file on the chain, we could just store the
immutable, permanent IPFS link (hash) of the file obtained
via link ← ipfs (file) by paying a much smaller fee, which
still timestamps and secures the content of file.



Fig. 1: Strawman CC-OCR protocol sketch. Solid lines denote
on-chain transactions. Dotted lines denote off-chain commu-
nication.

In the next two sections, we start by presenting a strawman
protocol for a CC-OCR crowdsourcing scenario. We then
introduce the idea of NF-Crowd for reducing cost to O(1).
Before discussing the proposed protocols, we summarize the
notations that will be used in the rest of this paper in Table I.

III. CC-OCR: A STRAWMAN PROTOCOL

In this section, we first describe the crowdsourcing contest
with open community review (CC-OCR) as a three-phase
process. We then propose a strawman protocol that decen-
tralizes CC-OCR projects over Ethereum. We finally identify
and categorize the cost-intensive steps within the strawman
protocol that results in its O(n) total cost.

A. CC-OCR as a three-phase process

We describe a CC-OCR project as a three-phase process
similar to the procedure of LEGO Ideas [22]:
• CC-OCR.initial: The client (C) initiates a design contest

with a detailed description of its requirements as well as a
reward.

• CC-OCR.entry: The interested designers (Ds) within the
community submit their entries to the contest.

• CC-OCR.review: The client (C) invites selected members
from the community as reviewers (Rs) to cast votes to the
entries (one vote per R) and pick one or multiple winning
entries based on the voting result. Here, the known identities
of reviewers prevent them from performing a Sybil attack
and hence, the one vote per reviewer could be guaranteed.

B. The strawman CC-OCR protocol

We first propose a strawman protocol to decentralize CC-
OCR projects over Ethereum. We sketch the protocol in Fig. 1
and present the formal description in Fig. 2. The regulations
of the strawman protocol are programmed as an agency smart
contract Sag, through which a client can hold a contest to
receive entries and votes from a community.
CC-OCR.initial: Client C initiates a contest by sending out
a function invocation transaction from an owned EOA to call
the function newContest() at CA addr(Sag). The transaction
would carry two arguments at its data payload: (1) a list of
deadlines indicating ending times of phases or epochs in the

CC-OCR.initial:
1. Client creates a contest: C ⇒ Sag.newContest

(deadlines, ipfs (description), Ξreward).
CC-OCR.entry:
2. Designers Ds submit entry objects (EOs):

2.1. Each D creates EO := ipfs (E(pkD, proposal)).
2.2. D ⇒ Sag. submitEO([addr(C), cn], EO).

CC-OCR.review:
3. Each D ⇒: skD.
4. Reviewers Rs submit vote objects (V Os):

4.1. Each R creates V O := addr(D).
4.2. R⇒ Sag. submitV O([addr(C), cn], V O).

5. Client reveals final verdict: C ⇒ Sag. verdict(cn).

Fig. 2: Strawman CC-OCR protocol

contest; (2) an IPFS link guiding designers to a file describing
the requirements of this contest. The transaction would also
include a non-empty value to transfer an amount of ether to
CA addr(Sag) to reward winning entries. From then on, the
arguments are permanently recorded in the blockchain and this
new contest can be uniquely identified via addr(C) the client
address and cn the number of contests that have been created
by C at CA addr(Sag).
CC-OCR.entry: After reading the descriptions, interested de-
signers from the community could submit entries to the
contest. The protocol requires a designer D to create an entry
object EO by first generating a one-time asymmetric key pair,
then encrypting the detailed proposal with the public key pkD
and finally computing the IPFS link of encrypted proposal.
Such an EO could make proposal confidential before the
review phase and also reduce the size of data stored on the
chain. After that, the designer could call submitEO() with a
transaction carrying arguments EO as well as [addr(C), cn]
that specifies the participating contest. It is worth noting that
any entry submmitted after the deadline specified by C for
the entry phase would be rejected because submitEntry()
includes a time checker function:

r e q u i r e ( now < d e a d l i n e ) ;

which requires miners to only accept the transaction if the
timestamp is smaller than deadline input via newContest().
CC-OCR.review: The protocol divides the review phase into
three epochs. The first epoch is for designers to reveal private
keys skD so that reviewers can read their entries. Then, during
the second epoch, each reviewer R creates a vote object VO
which in the strawman protocol is simply the address of the
designer that R wants to vote for. The created VO would be
submitted to CA addr(Sag) via submitV O(). Finally, client
C shall call verdict() during the third epoch and the function
would traverse the votes received by all the entries and pick
one or multiple entries obtaining the greatest number of votes
as winners, who could later withdraw the Ξreward deposited
by C via newContest().



C. The cost-intensive steps

Despite the simplicity, the strawman CC-OCR protocol
involves two key representative types of cost-intensive steps,
defined as TYPE n× 1 and TYPE 1× n, respectively.

Definition 1 (TYPE n × 1). A protocol step is said to be in
TYPE n× 1 if the number of transactions created at this step
increases along with the scale of the crowd.

Definition 2 (TYPE 1 × n). A protocol step is said to be in
TYPE 1× n if the cost of a single transaction created at this
step increases along with the scale of the crowd.

It is easy to see that both step 2 and 4 of the strawman protocol
in Fig. 2 are in TYPE n×1 while step 5 is in TYPE 1×n. At
step 2 (4), data is aggregated from the crowd and each designer
(reviewer) needs to submit data via a function invocation
transaction submitEO() (submitV O()) that spends a certain
amount of ether and hence, the accumulated cost at this step
increases along with the scale of the crowd (i.e., number of
transactions). At step 5, function verdict() contains a for
loop to iterate over all entries to pick the winners and each
iteration spends a certain amount of ether and therefore, the
accumulated cost at this step also increases along with the
scale of the crowd (i.e., number of iterations).

Theorem 1. A TYPE 1 × n step is associated with at least
one TYPE n× 1 step, but not vice versa.

We can see that even though steps 2 and 4 are in TYPE
n× 1, there is a difference between them. Specifically, step 2
leverages the blockchain as a bulletin board to post entries that
meet the requirements of the contest (e.g., before deadline) in
a deterministic and trustworthy way and hence, data received
at step 2 (i.e., EO) is not associated with any future step in
the protocol. In contrast, data aggregated at step 4 (i.e., VO) is
associated with step 5 as the votes are collected for the purpose
of being the inputs of a function that outputs poll winners.

Next, we introduce the NF-crowd CC-OCR protocol that
leverages cost-cutting strategies to convert the two types of
cost-intensive steps into cost-efficient steps and reduce the
lower bound of the total cost of a decentralized CC-OCR
project to O(1).

IV. CC-OCR: AN NF-CROWD PROTOCOL

We begin by presenting the high-level ideas of the NF-
Crowd CC-OCR protocol. We then present the strategies of
cutting costs at TYPE n × 1 steps and TYPE 1 × n steps
in detail. We finally analyze the total cost and safety of
the proposed protocol. We present the NF-Crowd CC-OCR
protocol sketch in Fig. 3 and the formal description in Fig. 4.

A. High-level ideas

The NF-Crowd CC-OCR protocol design includes the fol-
lowing novel mechanisms:
Enforceable off-chain execution: Similar to the strawman
CC-OCR protocol, most existing decentralized crowdsourcing
systems are designed to be executed in an on-chain mode,

where both data storage and computation over stored data are
performed on the blockchain to employ the decentralized trust
in a simple but expensive way [14], [26], [37]. We believe that
decentralized trust could be employed in a more cost-effective
way. Specifically, we design the NF-Crowd CC-OCR protocol
to be executed in an off-chain mode by default, involving no
cost-intensive on-chain operations resulting in O(n) cost when
all participants are honest. In case if any dishonest participant
performs any fraudulent behavior that violates the protocol
and aborts the off-chain execution, any honest participant
reserves the ability to switch the off-chain mode to an on-
chain mode similar to the strawman CC-OCR protocol so that
the execution of the protocol could always get enforced.
Punishable protocol violation: In order to incentivize partici-
pants to stay honest so that the protocol can end successfully
in its off-chain mode, we require each participant to lock an
amount of ether in smart contracts as a security deposit to
penalize potential misbehaviors that violate the protocol by
confiscating the security deposit paid by the corresponding
dishonest participant. Specifically, anyone who wishes to join
the community to engage in a contest needs to first send
out a function invocation transaction to call a function called
joinCommunity() at CA addr(Sag). The transaction carries
no arguments but is with a non-empty value to transfer an
amount of ether to the CA as Ξdeposit. Likewise, during the
initial phase, besides Ξreward, the newContest() function
also charges an amount of ether from client C as Ξdeposit.

B. TYPE n× 1 cost-cutting strategy

The proposed strategy for cutting the cost of TYPE n × 1
steps consists of four components, illustrated as step 2.1 (4.1),
step 2.2 (4.2), step 2.3 (4.3) and step 6 in Fig. 4, respectively.
Off-chain aggregation: The first component converts TYPE
n× 1 on-chain aggregation into TYPE 1×n off-chain aggre-
gation. The on-chain aggregation employed in the strawman
protocol requires participants (i.e., designers or reviewers)
to separately submit data to the blockchain, resulting in n
transactions. In the NF-Crowd protocol, participants transmit
data to a single uploader (i.e., client C), who then submits
aggregated data via a single transaction to the blockchain. In
Fig. 4, at step 2.1 (4.1), each EO (VO) additionally carries a
signature vrsD (vrsR) and is then transmitted to client C via
off-chain channels.
On-chain Merkle root: The second component leverages a
Merkle tree to reduce the cost of TYPE 1 × n off-chain
aggregation from O(n) to O(1). Instead of uploading raw
aggregated data to the blockchain, client C here can group the
aggregated data as a number of chunks2, create a Merkle tree
that takes the chunks as elements, make chunks public via off-
chain channels and upload the Merkle root to the blockchain.
This strategy has the following properties:
• O(1) cost: The only data that needs to be uploaded is the

Merkle root and the cost of uploading the 32-byte root is
constant.
2 Aggregated data is grouped into chunks for reducing the cost of reloading aggregated

data onto the chain. We discuss more details on this in Section V.



Fig. 3: NF-Crowd CC-OCR protocol sketch. Solid lines denote
on-chain transactions. Dotted lines denote off-chain commu-
nication. Dashed lines denote available on-chain transactions
as countermeasures.

• Transparency: All chunks are available to all participants
via off-chain channels.

• Tamper resistance: The integrity of each chunk could be
verified via the on-chain Merkle root and the integrity of
each EO (VO) could be verified via vrsD (vrsR).

• Traceability: Signatures vrsD (vrsR) could be used to
obtain the addresses of the designers (reviewers).

Thus, as long as all the participants are honest, this proposed
strategy can achieve O(1) cost with the same level of security
as in the on-chain aggregation strategy. At step 2.2 (4.2) in
Fig. 4, client C creates a Merkle tree for received EOs (VOs),
upload Merkle root via function rootEO() (rootVO()) and
reveal the IPFS link of chunksEO (chunksVO) via off-chain
channels.
Countermeasure against intentional exclusion: In on-chain
aggregation, data is uploaded by participants themselves and
it is hard to keep any participant from getting involved in a
contest. In off-chain aggregation, for the purpose of cutting
costs, data from all participants is uploaded together by a
single uploader, hence a dishonest uploader here has the ability
to intentionally exclude data belonging to certain participants
from the Merkle tree. As a countermeasure strategy, when
a designer (reviewer) fails to verify her data via the on-
chain Merkle root, the designer (reviewer) could re-upload the
data onto the chain by herself as in the on-chain aggregation
before the end of entry (review.e2) phase. The additional
cost is shared between the participant and the uploader. In
other words, we design the off-chain aggregation strategy
to be backed up by the on-chain aggregation strategy and
hence a dishonest uploader can hardly block any participant.
Meanwhile, both the uploader and participants are incentivized
to honestly follow the off-chain strategy to avoid additional
charges in the on-chain strategy. This component is illustrated

CC-OCR.initial:
1. Client creates a contest: C ⇒ Sag.newContest

(deadlines, ipfs (description), [Ξdeposit, Ξreward]).
CC-OCR.entry:
2. Designers Ds submit entry objects (EOs):

2.1. D creates EO := [vrsD, ipfs (E(pkD, proposal))],
where vrsD ← sig(keccak(ipfs (E(pkD, proposal)))).
Then, D 99K C: [EO].

2.2. C organizes received EOs as a Merkle tree and
computes rootEO ← merkleRoot(chunksEO):
2.2.1. C ⇒ Sag. rootEO(cn, rootEO).
2.2.2. C ⇒: ipfs (chunksEO).

2.3. < Countermeasure against intentional exclusion >
Designer D ⇒ Sag.submitEO([addr(C), cn], EO).
The transaction fee shall be shared by C and D.

CC-OCR.review:
3. Each D ⇒: skD.
4. Reviewers Rs submit vote objects (VOs):

4.1. R creates V O := [vrsR, addr(D)], where vrsR ←
sig(keccak(addr(D))). Then, R 99K C: [VO].

4.2. C organizes received VOs as a Merkle tree and
computes rootVO ← merkleRoot(chunksVO):
4.2.1. C ⇒ Sag. rootVO(cn, rootVO).
4.2.2. C ⇒: ipfs (chunksVO).

4.3. < Countermeasure against intentional exclusion >
Reviewer R⇒ Sag.submitVO([addr(C), cn],VO).
The transaction fee shall be shared by C and R.

5. C ⇒ Sag.offChainVerdict(cn, winners).
CC-OCR.audit:
6. < Countermeasure against double votes >

C (or R)⇒ Sag.doubleVotes(addr(C), cn, proof, chunkVO, i).
7. < Countermeasure against incorrect off-chain

computation >
R ⇒ Sag.reloadChunkVO(addr(C), cn, proof, chunkVO).
R⇒ Sag.onchainVerdict(addr(C), cn).

Fig. 4: NF-Crowd CC-OCR protocol

at step 2.3 (4.3) in Fig. 4, where function submitEO()
(submitVO()) would refund half of the transaction fee to the
designer (reviewer) from Ξdeposit paid by client C.
Countermeasure against double votes: It is possible that a
dishonest participant uploads data twice, first time via off-
chain aggregation and second time via on-chain aggregation.
For instance, a dishonest reviewer can first submit a VO to
client at step 4.1 and later submit the same VO at step 4.3,
even if the VO could be correctly verified through the on-chain
Merkle root. Without taking care of this, the vote may be
counted twice, which violates the ‘per vote per reviewer’ rule.
It is hard for contract Sag to detect the double-vote misbehavior
because the contract has no knowledge of the off-chain chunks.
Even if Sag knows all chunks, it would be quite expensive to
verify the double-vote misbehavior on the chain. Therefore, we



Algorithm 1: The doubleVotes() function
Input : C, cn, proof, chunk, i.

1 verifyT imestamp(now is in audit.e1);
2 hash← keccak256(chunk);
3 root← retrieveRoot(C, cn);
4 if verifyMerkleProof(proof, root, hash) == TRUE then
5 (v, r, s,D)← splitChunk(chunk, i);
6 R← vf(keccak256(D), v, r, s);
7 end

design a doubleVotes() function that could be called by either
client C or any reviewer R to detect such a misbehavior off
the chain and report it with a proof to Sag during epoch-1
of the audit phase that follows the review phase so that the
misbehavior could be efficiently verified by Sag on the chain.
We show the pseudo-code of doubleVotes() at Algorithm 1.
The function first verifies the timestamp of the transaction is
within epoch-1 of the audit phase (line 1). Then, it computes
the hash of the input chunk (i.e., chunk) that contains the
repeated VO, retrieves the Merkle root uploaded by client C
at step 4.2 and verifies the input Merkle proof (i.e., proof )
(line 2-4). After that, function splitChunk() would retrieve
the repeated VO from the chunk (i.e., ith VO in the chunk) and
decompose that VO to vrsR and addr(D) (line 5), from which
the contract gets the address of R who voted D via off-chain
aggregation (line 6). Finally, if the contract finds that R has
also voted at step 4.3, it will mark R as dishonest and record
the address of the reporter and remove the votes cast by R
from the poll. Later, the reporter could withdraw an award
confiscated from Ξdeposit paid by the violator.

C. TYPE 1× n cost-cutting strategy

Our strategy of cutting the cost of TYPE 1×n steps consists
of two components, illustrated as step 5 and step 7 in Fig. 4,
respectively.
Off-chain computation: By default, the NF-Crowd protocol
encourages computations to be performed off the chain. There-
fore at step 5 in Fig. 4, client C could compute the winners
off the chain after combining VOs received at step 4.2 and
VOs uploaded at step 4.3 (if any) and simply upload the
addresses of winning designers onto the chain via function
offChainVerdict(). If no one challenges the results in a certain
period of time, the contract would take the results as the final
verdict. In this way, the expensive on-chain computation could
be offloaded to the off-chain side and the cost of uploading
computation results is usually a small constant value.
Countermeasure against incorrect off-chain computation: It
is important that the offloaded computation could be reloaded
onto the blockchain so that off-chain computation results could
be replaced with trustworthy on-chain computation results at
any moment. By always backing up off-chain computation
with on-chain computation, incorrect off-chain computation
results would never be adopted in the final verdict. The
procedure of reloading off-chain computation consists of two
steps. First, as presented in Theorem 1, a TYPE 1× n step is
associated with at least one TYPE n×1 step, so that any data

Algorithm 2: The reloadChunkVO() function
Input : C, cn, proof, chunk.

1 verifyT imestamp(now is in audit.e2);
2 hash← keccak256(chunk);
3 root← retrieveRoot(C, cn);
4 if verifyMerkleProof(proof, root, hash) == TRUE then
5 for i = 0; i < size(chunk); i++ do
6 (v, r, s,D)← splitChunk(chunk, i);
7 R← vf(keccak256(D), v, r, s);
8 reload(R,D);
9 end

10 end

offloaded via the TYPE n×1 cost-cutting strategy presented in
the Section 4.2 needs to be reloaded onto the chain. After that,
computations could be performed on the reloaded data just as
in the strawman protocol. For instance, at step 7 in Fig. 4, a
reviewer R decides to challenge winners uploaded by client
C at step 5. To do this, the reporter should first reload all
chunksVO onto the chain via function reloadChunkVO(). We
show the pseudo-code of reloadChunkVO() at Algorithm 2.
The function first verifies the timestamp (line 1) and Merkle
proof (line 2-4). Then, the function runs a for loop to traverse
VOs included in the input chunk (line 5-9), recover the address
of reviewer signing each VO (line 6-7) and reload all the votes
inside the chunk onto the chain (line 8). Then, the computation
could be re-done on the chain via function onchainVerdict().
If the results of onchainVerdict() are different from the ones
in offchainVerdict(), the final verdict would take the results
of onchainVerdict() and a part of Ξdeposit paid by client C
would be transferred to the reporter as an award. Otherwise,
the final verdict would still take the results of offchainVerdict().

D. Cost and Security analysis

We analyze the cost and security of the proposed NF-Crowd
CC-OCR protocol as follows:

Lemma 1. The NF-Crowd CC-OCR protocol has a total cost
in the range of [O(1), O(n)] and the O(1) lower bound could
be reached as long as the participants are rational.

Proof. The total cost would reach the upper bound cup
ocr

when (1) all EOs are uploaded via submitEO() onto the
blockchain and (2) all VOs are uploaded via submitVO()
or reloadChunkVO() onto the blockchain and (3) function
doubleVotes() is called for each VO and (4) function onchain-
Verdict() is invoked, namely,

O(cup
ocr)→ O(ceo ·pd ·n+(cvo+cdv)·pr ·n+cov+crest)→ O(n),

where ceo and cvo denotes cost of uploading per EO and VO,
pd and pr denotes percentage of designers and reviewers in
the crowd that engage in the contest, cdv and cov express
cost of doubleVotes() and onchainVerdict() and finally crest

represents the total cost of calling other functions inside
Sag. In contrast, the total cost would reach the lower bound
clow

ocr when none of submitEO(),submitVO(), reloadChunkVO(),
doubleVotes() and onchainVerdict() have been invoked, namely
O(clow

ocr ) → O(crest) → O(1). All the five functions are



countermeasures against dishonest participants by fixing prob-
lems made by them and confiscating Ξdeposit paid by them,
so the violators would gain no positive benefit but only a
negative payoff. Considering that rational adversaries choose
to violate protocols only when doing so brings them a positive
payoff [12], [20], [21], [30], rational participants would not
choose to lose Ξdeposit, which in turn would push the total
cost to reach its lower bound.

We define the abortion of protocols to be the case that nei-
ther offchainVerdict() nor onchainVerdict() has been executed
by the end of audit phase. We define the correction of results
to be the case that the effect of all the three identified protocol
violations (intentional exclusion, double vote and incorrect off-
chain computation) to the results has been eliminated by the
end of audit phase.

Lemma 2. The NF-Crowd CC-OCR protocol cannot be
aborted and the results are guaranteed to be correct as long as
at least one reviewer is honest.

Proof. We have assumed that at least one reviewer is honest in
Seection II-E. Therefore, in the worst case, the client and all
but one reviewers are dishonest. We first prove the never-abort
property. During the review phase, the client may refuse to call
offchainVerdict(), resulting in incorrect off-chain computation.
As a countermeasure, the honest reviewer could always reload
all votes via reloadChunkVO() and pick the winners via
onchainVerdict(). Therefore, with the existence of a single
honest reviewer, it is guaranteed that either offChainVerdict()
or onchainVerdict() will be called by the end of audit phase.
Next, we prove the always-correct property. As long as there
is a single honest reviewer, this reviewer always reserves
the ability to include her vote into the pool via submitVO()
(intentional exclusion), to eliminate all illegal on-chain votes
via doubleVotes() (double vote), to reload all legal off-chain
votes onto the chain via reloadChunkVO() and finally to pick
the winners from the pool formed by all legal votes via
onchainVerdict() (incorrect off-chain computation). Therefore,
the effect of all the three identified protocol violations to the
results can be eliminated before end of audit phase.

V. IMPLEMENTATION AND EVALUATION

In this section, we present the evaluation of the two
protocols: strawman CC-OCR and NF-Crowd CC-OCR. We
programmed a smart contract Sagency for each of the protocols
using Solidity and evaluated the protocols over the Ethereum
official test network kovan [25]. Similar to recent work on
blockchain-based platforms [10], [16], the key focus of our
evaluation is on measuring gas consumption as the execution
complexity and monetary cost in Ethereum are measured via
gas consumption. In addition, we compare the cost of the
proposed protocols with that of two existing solutions.

A. Gas consumption of proposed protocols

In Table II, we list the key functions in the programmed con-
tracts that interact with protocol participants during different
phases and the cost of these functions in both Gas and USD.

TABLE II: Key functions and their cost in Gas and USD. A
function marked ∗, • or ∗• represents the function is included
in strawman CC-OCR, NF-Crowd CC-OCR or both the two
protocols, respectively.

Phase Function Description Gas USD

initial ∗
•newContest creat a contest 182909/

244434
$0.53/
$0.71

entry •rootEO submit EO root 45322 $0.13
∗
•submitEO submit one EO 143978 $0.42

review

•rootVO submit VO root 65956 $0.19
∗
•submitVO submit one VO 62267 $0.18
•offChainVerdict submit results of

off-chain verdict
44967 $0.13

∗verdict directly execute
on-chain verdict

37227+
2171nd

$0.11+
0.006nd

audit
•doubleVotes report double vote 65844 $0.19

•reloadChunkVO reload VO chunks
to blockchain

37843+
36578nvo

$0.11+
0.11nvo

•onchainVerdict redo verdict with
smart contract

46324+
2171nd

$0.14+
0.006nd

For ease of expression, a function marked ∗, • or ∗• represents
the function is included in strawman CC-OCR, NF-Crowd CC-
OCR or both the two protocols, respectively. The cost in USD
is computed through cost(USD)=cost(Gas) ∗ GasToEther ∗
EtherToUSD, where GasToEther and EtherToUSD are taken as
their mean value during the first half of the year 2019 recorded
in Etherscan [17], which are 1.67 ∗ 10−8 Ether/Gas and 175
USD/Ether, respectively. We next evaluate the cost of the two
protocols:
Strawman CC-OCR protocol: The cost in Strawman CC-OCR
includes the following components: (1) a client to set up a new
contest via newContest() ($0.53) during CC-OCR.initial; (2)
each interested designer to submit an entry via submitEO()
($0.42) during CC-OCR.entry; (3) each reviewer to cast a vote
via submitVO() ($0.18) during CC-OCR.review and (4) client
to pick winners via verdict(). It thus costs about $(0.53 +
0.42nd + 0.18nr + (0.11 + 0.006nd)) = $(0.64 + 0.426nd +
0.18nr) for completing a contest that involves nd designers
and nr reviewers, where $(0.11+0.006nd) is the average cost
of picking winners among nd designers in verdict().
NF-Crowd CC-OCR protocol: The lower bound of the cost
in NF-Crowd CC-OCR also consists of four parts: (1) a
client to set up a new contest via newContest() ($0.71)
during CC-OCR.initial, which is more expensive because of
the additionally transferred Ξdeposit; (2) the client to upload
the Merkle root of EOs via rootEO() ($0.13) during CC-
OCR.entry; (3) the client to upload the Merkle root of V Os
via rootV O() ($0.19) during CC-OCR.review and finally (4)
the client to upload winners via offChainVerdict () ($0.13).
The lower bound of the cost is then $(0.71 + 0.13 + 0.19 +
0.13) = $1.16. If any misbehavior occurs, the countermeasure
functions (i.e., submitEO(), submitVO(), doubleV otes(),
reloadChunkVO(), onchainVerdict()) can be invoked and the
cost for calling them will be mainly deducted from Ξdeposit
paid by protocol violators. It is worth noting that the cost



Fig. 5: Cost of the proposed protocols and existing solutions

of function reloadChunkVO(), $(0.11 + 0.11nvo), increases
along with the number of V Os carried by a chunkVO (i.e.,
nvo). Grouping VOs into chunksVO could effectively reduce
the cost of reloading VOs. For instance, when nvo = 1, the cost
of reloading 100 VOs would be $100∗(0.11+0.11∗1) = $22,
which is almost twice of $(0.11 + 0.11 ∗ 100) = $11.11 with
nvo = 100.

B. Comparison between NF-Crowd and existing solutions

Next, we compare the cost of strawman CC-OCR and
NF-Crowd CC-OCR with both the platform fee charged by
centralized 99designs platform and the cost of a recent
decentralized protocol in [14]. We assume that the design
contest has a $500 reward. Also, for the purpose of evaluating
the scalability of the solutions, we changed the scale of the
crowd n and displayed the results in Fig. 5. As can be seen,
when n is increased from 10 to 1000, the cost of strawman CC-
OCR linearly increases from $6.7 to over $600. In contrast,
the cost of NF-Crowd CC-OCR stays at $1.16 constantly
regardless of the scale of the crowd. The cost of 99designs
stays at $75, namely 15% of $500 reward. In fact, from $8
reward onwards it is more economical to use NF-Crowd CC-
OCR than 99designs. The cost of the decentralized protocol
in [14] increases from $22.4 to $140.5 when the crowd
gets scaled up. Therefore, we see that NF-Crowd protocols
minimize the cost by decoupling the amount of service fees
from both the scale of the crowd and the amount of reward.

VI. RELATED WORK

A. Centralized crowdsourcing

Crowdsourcing has been emerging as a successful business
model and has driven the rise of centralized crowdsourc-
ing platforms such as Upwork [33], Amazon Mechanical
Turk [32], 99designs [1] and designContest [11]. Via
these platforms, clients publish human intelligence tasks (HIT)
that are challenging for computers but easy for human to
complete with rewards and interested workers (or freelancers
or designers) accomplish the tasks to earn rewards. As the
primary revenue stream, service fees are charged from the
rewards by most of these platforms. Upwork [33] charges
workers a sliding service fee based on the lifetime billings
with a specific client, which consists of 20% of the first $500,

10% of the billings between $500 and $10000 and 5% of the
billings that exceed $10000. For instance, Amazon Mechanical
Turk (AMT) [32] charges clients 20% fee on the reward and
bonus amount (if any) clients pay workers. Currently, Clients
and designers are used to accepting the high service fees
as they need a relatively trustworthy intermediary to exclude
dishonest behaviors [39]. The NF-Crowd protocols proposed
in this paper minimize the fees for purchasing trust in crowd-
sourcing. On the other hand, it makes the off-chain workload
heavier. In other words, the NF-Crowd protocols transform
the mandatory charge of monetary fees into non-monetary
off-chain workload, offering a new option to participants in
crowdsourcing.

B. Decentralized crowdsourcing

Recent advancements in blockchain technologies [29] and
smart contract platforms like Ethereum [36] are driving the rise
of decentralized crowdsourcing systems [5], [14], [18], [26],
[27], [34], [37], [38]. In contrast to centralized crowdsourc-
ing platforms, decentralized crowdsourcing systems leverage
the distributed miners to decentralize both data storage and
computation in a tamper-resilient manner. Thus they eliminate
the need for a trusted third party. However, existing designs
of decentralized crowdsourcing systems can hardly handle
transaction fees in a scalable manner, resulting in total costs
of decentralizing crowdsourcing even higher than service fees
charged by centralized crowdsourcing platforms. For instance,
decentralized CrowdBC [26] charges 0.011 ether (i.e., $1.93
by taking the average gas and ether prices in first half of year
2019) to tag 100 images while the same task only spends
about $0.45 in centralized AMT [32]. In [14], aggregating data
from 1,000 data providers costs $140. In [37], adding each
task to the task matching smart contract cost about 210,000
gas (i.e., $0.61), namely $610 for adding 1,000 tasks. The
NF-Crowd protocols proposed in this paper reduce the cost
of running decentralized projects on top of Ethereum to a
small constant value regardless of the scale of the crowd,
which for the first time demonstrates a significant economic
advantage in decentralizing crowdsourcing. In addition, we
consider NF-Crowd a generic feature that is orthogonal to
other design goals of decentralized crowdsourcing systems,
allowing existing protocols to also become NF-Crowd by
simply identifying TYPE n × 1 and TYPE 1 × n steps and
reducing their cost with our strategies.

C. Scaling blockchain with off-chain execution

Off-chain execution of smart contracts is a promising
solution for improving blockchain scalability [6], [9], [15].
However, recent works in this line have to either assume
one honest manager for off-chain execution [6] or allow the
execution to get aborted when the manager is dishonest [9].
The state channel network (SCN) [15] could achieve the never
abort property when at least one participant is honest but
it only supports two-participant contracts. The NF-Crowd
protocols proposed in this paper extend the objective to support
complex multi-participant multi-round smart contracts without



losing the never abort property. In addition, the NF-Crowd
protocols for CC-OCR projects have been implemented in
Ethereum, so they are ready-to-use.

D. Using cryptocurrency as security deposits

There have been many recent efforts on blockchain-based
protocol design that leverage cryptocurrency as security de-
posits to penalize unexpected behaviors and improve secu-
rity [2], [12], [24], [28]. In [12], ether is used as security
deposits to provide verifiable cloud computing. In [28], ether
is used as security deposits to enforce certificate authorities
to be honest. Inspired by these previous efforts, NF-Crowd
demands each participant to lock ether in smart contracts as
security deposits to penalize potential misbehaviors violating
the protocol and thereby enforces participants to stay honest.

VII. CONCLUSION

This paper proposes a new suite of protocols called
NF-Crowd that reliably resolves the scalability issues faced
by decentralized crowdsourcing projects. The proposed ap-
proach reduces the lower bound of the total cost to O(1).
We prove that as long as participants of a project powered
by NF-Crowd are rational, the O(1) lower bound of the
cost could be reached regardless of the scale of the crowd.
We also demonstrate that as long as at least one participant
of a project powered by NF-Crowd is honest, the project
cannot be aborted and the results are guaranteed to be correct.
We design NF-Crowd protocols for a representative type
of project named crowdsourcing contest with open commu-
nity review (CC-OCR). We implement the protocols over
the Ethereum official test network. Our results demonstrate
that NF-Crowd protocols can reduce the cost of running a
CC-OCR project to less than $2 regardless of the scale of
the crowd, providing a significant cost benefit in adopting
decentralized crowdsourcing solutions.
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