
Scalable and Privacy-preserving Design of
On/Off-chain Smart Contracts

Chao Li, Balaji Palanisamy and Runhua Xu

School of Computing and Information, University of Pittsburgh, USA

{chl205, bpalan, runhua.xu}@pitt.edu

Abstract—The rise of smart contract systems such as Ethereum
has resulted in a proliferation of blockchain-based decentralized
applications including applications that store and manage a
wide range of data. Current smart contracts are designed to
be executed solely by miners and are revealed entirely on-chain,
resulting in reduced scalability and privacy. In this paper, we
discuss that scalability and privacy of smart contracts can be
enhanced by splitting a given contract into an off-chain contract
and an on-chain contract. Specifically, functions of the contract
that involve high-cost computation or sensitive information can
be split and included as the off-chain contract, that is signed
and executed by only the interested participants. The proposed
approach allows the participants to reach unanimous agreement
off-chain when all of them are honest, allowing computing
resources of miners to be saved and content of the off-chain
contract to be hidden from the public. In case of a dispute
caused by any dishonest participants, a signed copy of the off-
chain contract can be revealed so that a verified instance can
be created to make miners enforce the true execution result.
Thus, honest participants have the ability to redress and penalize
any fraudulent or dishonest behavior, which incentivizes all
participants to honestly follow the agreed off-chain contract.
We discuss techniques for splitting a contract into a pair of
on/off-chain contracts and propose a mechanism to address the
challenges of handling dishonest participants in the system. Our
implementation and evaluation of the proposed approach using
an example smart contract demonstrate the effectiveness of the
proposed approach in Ethereum.

I. INTRODUCTION

Creating trust among mutually distrustful participants with-
out involving a trusted third party has been a challenge for
several decades. The growth of Bitcoin [11] and the emerging
follow-up cryptocurrencies have positioned blockchain as a
promising solution for creating trust in a decentralized en-
vironment. Smart contracts expand the use of blockchains
by allowing mutually distrustful participants to reach an
agreement upon the execution results of complex contracts
without a trusted third party. In leading smart contract systems
such as Ethereum [19] and NEO [12], every single step of
the decentralized computation is performed and verified by
miners in the blockchain network, who are incentivized by
the cryptocurrency rewards to behave honestly. This combina-
tion of decentralized computation and cryptocurrency-based
incentives has led to the development of a large number
of decentralized applications including applications that store
and manage a wide range of data [15]. Ethereum [19], the
first blockchain system that supports Turing-complete smart
contracts, had a peak market cap of $134 billion [3] in 2018.

The Smart Contracts market is estimated to grow at a CAGR
of 32% during the period 2017 to 2023 [14].

Current smart contracts are designed to be executed solely
by miners and are revealed entirely on-chain, resulting in
reduced scalability and privacy. In this paper, we discuss that
scalability and privacy of smart contracts can be enhanced by
splitting a contract into two separate contracts: (1) an off-chain
contract encapsulating functions of the whole contract that
involve high-cost computation and/or distinguishable logic that
may reveal private information about the participants; (2) an
on-chain contract encapsulating the remaining low-cost/non-
sensitive functions of the whole contract. Replacing the whole
smart contract with the pair of on/off-chain contracts enables
deploying only the on-chain contract onto the blockchain. This
also allows saving the computing cost of running the off-chain
contract by miners in the Ethereum blockchain network while
the sensitive information involved in the off-chain contract can
be hidden from the public.

After generating the pair of on/off-chain contracts from the
whole contract, when all the participants are honest, they can
reach unanimous agreement on the result of off-chain contract,
just as if the off-chain contract was deployed on-chain and
executed by miners. However, if there is a dispute of the
off-chain result, such as a dishonest participant trying to lie
about it, it would be necessary to allow honest participants
to resolve the dispute on-chain. In this paper, we propose
an effective mechanism that allows any honest participant to
leverage the already deployed on-chain contract to create an
on-chain instance of the off-chain contract. The process of
creating a new contract from an existing contract can establish
a unique connection between the two contracts. Through this
connection, only the off-chain contract agreed and signed by
all the participants can pass the integrity verification and can
be created by the on-chain contract as a verified instance.
Then, only the execution result of the verified instance can
enforce the state change of the on-chain contract. Thus,
honest participants have the ability to redress and penalize
any fraudulent or dishonest behavior, which incentivizes all
participants to honestly follow the agreed off-chain contract.
We implement and evaluate the proposed approach in the
Ethereum official test network Kovan [7] with an example
smart contract using Solidity [16]. Our implementation demon-
strates the effectiveness of the proposed approach of using
on/off-chain contracts in Ethereum.

II. ON/OFF-CHAIN SMART CONTRACTS

In this section, we first introduce the creation and execution
of a general smart contract in Ethereum. We then present the
techniques for splitting a given smart contract into a pair of
on/off-chain contracts and explain how the pair of contracts
can be executed in Ethereum.

A. Smart contracts in Ethereum

There are two types of accounts in Ethereum, namely Exter-
nal Owned Accounts (EOAs) controlled by private keys owned
by users and Contract Accounts (CAs) assigned to smart
contracts. A user of Ethereum should first create a EOA with
a pair of keys and then deploy smart contracts from the EOA,
resulting in the creation of CAs associated with the smart
contracts. A smart contract in Ethereum refers to a piece of
program code that usually consists of multiple functions, a few
parameters and perhaps some modifiers. After programming a
smart contract in a language such as Solidity [16], a user can
compile the contract to get its bytecode and Application Binary
Interface (ABI) and can send a contract creation transaction to
the Ethereum network with bytecode and (optional) ABI. Upon
receiving the transaction, miners will include the bytecode
into the next block, meaning that a new smart contract has
been created, whose CA can be deterministically computed
from the address of its creator and a nonce. Each CA can
be viewed as a small decentralized server that can act based
on the functions in its contract and can store data (e.g.,
cryptocurrency) allowed by its contract. However, CAs are
passive, meaning that execution of any function of deployed
smart contracts must be invoked through either transactions
sent by EOAs or messages sent from CAs. As a result, the
transactions/messages, as well as function inputs inside them,
are all recorded by the Ethereum blockchain, which makes the
function outputs deterministic because all miners can execute
the function with the same inputs and gets the same outputs.
It is worth noting that one needs to pay Gas [19] for either
deploying a new smart contract or calling a function of existing
smart contracts in Ethereum. Gas can be exchanged with
Ether, the cryptocurrency used in Ethereum, and Ether can
be exchanged with real money.

As discussed above, Ethereum requests each invoked func-
tion of deployed on-chain contracts to be executed by all
the miners for the purpose of getting trustworthy outputs
in the decentralized environment. However, this all-on-chain
execution model of smart contracts may drain the scarce
network resources and introduce privacy risks, when the
invoked function includes high-cost calculation or sensitive
information. Therefore, instead of deploying a whole contract
with all function included, we propose to split such problem
functions from the whole contract to execute them off-chain
while still executing the rest of functions on-chain. We present
the technique of implementing this approach by splitting a
given contract into a pair of on/off-chain contracts.

Fig. 1: Comparison of the current all-on-chain execution model of
smart contracts in Ethereum and the proposed hybrid-on/off-chain
execution model

B. On/off-chain smart contracts

We broadly classify functions of smart contracts into two
categories based on the computing resources spent for exe-
cuting them and the sensitive information carried by them:
(1) heavy/private functions involving high-cost calculation or
sensitive information and (2) light/public functions involving
none of these features. For example, Alice and Bob may decide
to bet on a private topic between them using cryptocurrency
they have, so they draft a simplified betting contract as shown
in Algorithm 1, which consists of three functions. They can
first make deposits to the contract through deposit(), then
invoke reveal() after a certain temporal threshold to reveal
the result and finally reassign the cryptocurrency locked in
the contract based on the result by calling reassign(). Since
both deposit() and reassign() are simple cryptocurrency trans-
fer functions, they contain neither high-cost calculation nor
sensitive information, so they can be allocated to light/public
functions. In contrast, reveal() may contain details of the
customized betting rules that are private to the participants and
may involve an arbitrary amount of computational cost, hence
it should be allocated to a heavy/private function. It could be
quite customized to allocate functions into the two categories.
Here we recommend to allocate all functions of cryptocurrency
transfer into light/public functions and consider the remaining
ones as heavy/private functions.

c o n t r a c t b e t t i n g {
f u n c t i o n d e p o s i t () payable p u b l i c p a r t i c i p a n t O n l y ;
f u n c t i o n r e v e a l () p u b l i c p a r t i c i p a n t O n l y ;
f u n c t i o n r e a s s i g n () p u b l i c p a r t i c i p a n t O n l y ;

}

Algorithm 1: A simplified betting contract

After all functions of a smart contract has been classified,
the heavy/private functions and light/public functions can be
grouped into an off-chain contract and an on-chain contract,

respectively. Then, only the on-chain contract needs to be
deployed to be publicly executed by all the miners while the
off-chain contract can be privately executed by only a small
group of interested participants. Ideally, splitting the off-chain
contract from the whole contract does not affect the state
change of the on-chain contract. For clarity of illustration,
consider an example smart contract in Fig. 1, which consists
of three light/public functions (i.e., c1, c3, c5) and three
heavy/private functions (i.e., c2, c4, c6). With the all-on-chain
model, the whole contract consisting of all the six functions
is deployed and miners need to execute function f2, f3, f4
and f5 to change the state of the deployed contract from S1
to S5. In contrast, with the hybrid-on/off-chain model, only
an on-chain contract consisting of function f1, f3 and f5
is deployed, so miners only need to execute function f3 and
f5 while f2 and f4 can be privately executed by interested
participants. As long as the participants are honest, they will be
able to reach unanimous agreement on the off-chain execution
results of f2 and f4 and input these results to turn the contract
state from S1 to S2 and later from S3 to S4, just as if both
f2 and f4 were executed by miners on-chain. However, in
case of dishonest participants trying to lie about the off-chain
execution results, we need an additional mechanism to always
allow honest participants to enforce the true execution results
of the off-chain contract. We will introduce this mechanism in
the next section.

III. ENFORCING OFF-CHAIN CONTRACTS

Our proposed enforcement mechanism is used by honest
participants to enforce the results of off-chain execution and
penalize any dishonest participants.

In the presence of any dishonest participants, an honest
participant can simply deploy the heavy/private functions back
to the blockchain, make them get recomputed by the miners
to enforce the state of on-chain contract to be changed as
expected. However, there are two challenges to make this
strategy work as expected. First, the honest participant must
prove that the deployed heavy/private functions are exactly
same as the original ones agreed by all the participants at the
beginning. Otherwise, participants can falsify these functions
based on their self-interests. Second, after verifying the in-
tegrity of the deployed heavy/private functions, we need to
rebuild a connection between these functions and the already
deployed light/public functions (i.e., on-chain contract). Since
the two groups of functions have been separated from a single
smart contract, such a connection is necessary to make them
re-recognize each other, just as if they were deployed together
in a single smart contract at the beginning.

To overcome the aforementioned challenges altogether, in
Fig.2, we propose a general mechanism of enforcing off-chain
contracts in the hybrid-on/off-chain execution model of smart
contracts, which consists of four stages:
• Split/generate: Before any on-chain activity, the original

contract is first split to two parts that package light/public
functions and heavy/private functions, respectively. Obvi-
ously, the two parts themselves usually do not contain any

Fig. 2: Two categories of functions in the whole contract are padded
with a few extra functions to form the on-chain contract and the
off-chain contract. In the presence of dishonest participants, any
honest participant can use the signed copy of the off-chain contract
to make the on-chain contract create a verified instance of the off-
chain contract and leverage the unique link between the instance and
its creator (i.e., on-chain contract) to enforce state change of the on-
chain contract.

function for resolving a dispute, so we need to pad each
group of functions with a few extra functions prepared for
a dispute. After padding, we have already generated an on-
chain contract as well as another off-chain contract from the
whole contract.

• Deploy/sign: The on-chain contract (i.e., light/public func-
tions including the padded extra functions) can then be
deployed by any participant to the blockchain while the
off-chain contract (i.e., heavy/private functions plus padded
extra functions) needs to be converted into bytecode to
be signed by all the participants. It is important to note
that each participant must obtain a copy of the off-chain
contract with signatures from all the participants before
any interaction with the deployed on-chain contract can
take place. The procedure of generating signed copies may
easily be implemented through off-chain communication
approaches, such as Whisper [18] in Ethereum.

• Submit/challenge: When all participants are honest, they can
execute computation of the off-chain contract by themselves
and manually submit the results to the on-chain contract to
push the state change. This can be implemented by leaving
a challenge period after a representative of the participants
have submitted the result, during which all other participants
can challenge the result with the signed copy of the off-
chain contract. Obviously, if the representative is honest,
there will be no need to challenge the submitted result, so the
state of the on-chain contract can be successfully changed
as expected without revealing any information of the off-
chain contract and also without requiring miners to perform
the computation of heavy/private functions.

• Dispute/resolve: In the presence of any dishonest partici-
pants, such as if the representative violates the agreement, a
dispute occurs. To resolve the dispute, during the challenge
period, any honest participant can submit the signed copy,
namely the bytecode and signatures together, to the on-
chain contract, where an extra function padded to the on-

Betting Rules
Participants Alice and Bob.
Rules:
1. Before time T0, Alice should deploy on-chain contract. Both

the participants should keep a signed copy of the off-chain
contract.

2. Before time T1, both the participants can make a deposit (1
Ether) to on-chain contract through deposit() or request a
refund through refundRoundOne().

3. Between T1 and T2, if either Alice’s balance or Bob’s
balance in on-chain contract is not 1 Ether, the participants
can request a refund through refundRoundTwo().

4. The time point T2 is the temporal threshold when the betting
result becomes available. After that, between T2 and T3, the
participants can compute the result off-chain. The loser (say
Alice) can then call reassign() to make on-chain contract
transfer 2 Ether to winner’s account.

5. Finally, if the loser refused to implement step 4, the game
will go to dispute/resolve stage. After T3, the winner (say
Bob) can call the extra function deployVerifiedInstance()
with the signed copy at the on-chain contract and then call
the extra function returnDisputeResolution() at the verified
instance to enforce the dispute resolution.

TABLE I: Betting rules

chain contract during the split/generate stage will be called
to verify the signed copy through signatures and create a
verified on-chain instance. The deployed verified instance
is created through the bytecode of the off-chain contract,
so it is cloned from the off-chain contract and consists of
all the heavy/private functions and padded extra functions
in the off-chain contract. A participant (may or may not
be the one submitting the signed copy) can then invoke
the heavy/private functions within the verified instance to
make them be executed by the miners. The execution result
will then be the true one, which is different from the false
result submitted by the dishonest participant during the
dispute/resolve stage. Then, an extra function padded to the
off-chain contract will be invoked to send the true result
back to the on-chain contract and another extra function
padded to the on-chain contract will receive the true result,
enforce the dispute resolution and penalize the dishonest
participant. To sum up, in the fourth stage, three extra
functions are designed to resolve a dispute:
– deployVerifiedInstance(): We design this extra function at

the on-chain contract to receive the signed copy during
the challenge period. Once called, this function first
verifies all the received signatures and then creates an
on-chain instance for the bytecode within a signed copy
that has passed the verification.

– returnDisputeResolution(): We design this extra function
at the off-chain contract to return the true result computed
by miners to the on-chain contract.

– enforceDisputeResolution(): We design this extra function
at the on-chain contract to enforce the dispute resolution.

With this four-stage mechanism, honest participants always
keep the ability to make dishonest participants be verified and
monetary penalized, which in turn incentivizes all participants
to honestly follow the results of off-chain smart contracts.

Next, we design and implement the proposed approaches using
a detailed example.

IV. IMPLEMENTATION

We implement the proposed approaches using an example
smart contract for betting between Alice and Bob. The betting
rules in the example smart contract are listed in Table I.
Note that the presented betting rules do not involve penalty to
dishonest participants, however it is straight-forward to revise
step 2, 3 and 4 to monetarily penalize any dishonest participant
in step 5.

The contracts are programmed with Solidity and the off-
chain signature part is implemented using JavaScript with
ethereumjs-util [4] package and web3-utils [17] package. All
the contracts have been tested over the Ethereum official test
network Kovan [7].

pragma s o l i d i t y ˆ 0 . 4 . 2 4 ;

c o n t r a c t onChain {
// light/public functions
f u n c t i o n d e p o s i t () payable p u b l i c b e f o r e T 1

c e r t i f i e d p a r t i c i p a n t O n l y ;
f u n c t i o n refundRoundOne () p u b l i c b e f o r e T 1

c e r t i f i e d p a r t i c i p a n t O n l y ;
f u n c t i o n refundRoundTwo () p u b l i c T1toT2

c e r t i f i e d p a r t i c i p a n t O n l y amountNotMet ;
f u n c t i o n r e a s s i g n () p u b l i c T2toT3

c e r t i f i e d p a r t i c i p a n t O n l y ;
// extra functions
f u n c t i o n d e p l o y V e r i f i e d I n s t a n c e (b y t e s memory

by tecode , u i n t 8 va , bytes32 ra , bytes32 sa ,
u i n t 8 vb , bytes32 rb , bytes32 sb) p u b l i c
a f t e r T 3 c e r t i f i e d p a r t i c i p a n t O n l y amountMet ;

f u n c t i o n e n f o r c e D i s p u t e R e s o l u t i o n (bool winner)
e x t e r n a l deployedAddrOnly ;

}

Algorithm 2: on-chain contract (interface)

pragma s o l i d i t y ˆ 0 . 4 . 2 4 ;

// interface
c o n t r a c t onChain {

f u n c t i o n e n f o r c e D i s p u t e R e s o l u t i o n (bool winner)
e x t e r n a l ;

}

c o n t r a c t o f f C h a i n {
m o d i f i e r c e r t i f i e d p a r t i c i p a n t O n l y { . . . }
// heavy/private functions
f u n c t i o n r e v e a l () p r i v a t e r e t u r n s (bool) { . . . }
// extra functions
f u n c t i o n r e t u r n D i s p u t e R e s o l u t i o n (address addr)

p u b l i c c e r t i f i e d p a r t i c i p a n t O n l y {
onChain C on = onChain (addr) ;
C on . e n f o r c e D i s p u t e R e s o l u t i o n (r e v e a l ()) ;

}
}

Algorithm 3: off-chain contract (simplified)

In rule 1, before T0, the on-chain contract should be
deployed and the participants should have obtained signed
copy of the off-chain contract. We show the implementation
of the two contracts with Solidity in Algorithm 2 and Algo-
rithm 3, respectively. As can be seen, in this example, the on-
chain contract consists of four light/public functions and two
extra functions while the off-chain contract consists of one
heavy/private function and one extra function. Here we note

that the parameters, constructor and modifiers (e.g., beforeT1,
certifiedparticipantOnly) are omitted in Algorithm 2.

v a r w e b 3 U t i l s = r e q u i r e (’web3-utils’)
v a r e t h U t i l s = r e q u i r e (’ethereumjs-util’)
v a r b y t e c o d e = ’0x608060405234801...bab40029’
v a r h b y t e c o d e = w e b 3 U t i l s . s o l i d i t y S h a 3 (code)
v a r h by tecode hex =new B u f f e r (h b y t e c o d e . s l i c e (2) ,’hex’)

v a r p r i v k e y a = new B u f f e r (’499...38c’ , ’hex’)
v a r v r s a = e t h U t i l s . e c s i g n (h by tecode hex , p r i v k e y a)
v a r va = v r s a . v
v a r r a = v r s a . r . t o S t r i n g (’hex’)
v a r sa = v r s a . s . t o S t r i n g (’hex’)

v a r p r i v k e y b = new B u f f e r (’360...572’ , ’hex’)
v a r v r s b = e t h U t i l s . e c s i g n (h by tecode hex , p r i v k e y b)
v a r vb = v r s b . v
v a r rb = v r s b . r . t o S t r i n g (’hex’)
v a r sb = v r s b . s . t o S t r i n g (’hex’)

Algorithm 4: Signature v-r-s generation

c o n t r a c t onChain {
. . .
address p u b l i c deployedAddr ;

f u n c t i o n d e p l o y V e r i f i e d I n s t a n c e (b y t e s memory
by tecode , u i n t 8 va , bytes32 ra , bytes32 sa ,

u i n t 8 vb , bytes32 rb , bytes32 sb) p u b l i c
a f t e r T 3 c e r t i f i e d p a r t i c i p a n t O n l y amountMet {

// verify signatures
bytes32 h b y t e c o d e = keccak256 (b y t e c o d e) ;
address a = e c r e c o v e r (h by tecode , va , ra , sa) ;
address b = e c r e c o v e r (h by tecode , vb , rb , sb) ;
r e q u i r e (a == c e r t i f i e d p a r t i c i p a n t [0] && b ==

c e r t i f i e d p a r t i c i p a n t [1]) ;
// create verified instance
address addr ;
assembly {

addr := c r e a t e (0 , add (code , 0x20) , mload (code))
}
deployedAddr = addr ;

}
. . .

}

Algorithm 5: deployVerifiedInstance()

c o n t r a c t onChain {
. . .
f u n c t i o n e n f o r c e D i s p u t e R e s o l u t i o n (bool winner)

e x t e r n a l deployedAddrOnly {
a c c o u n t B a l a n c e [p a r t i c i p a n t [0]] = 0 ;
a c c o u n t B a l a n c e [p a r t i c i p a n t [1]] = 0 ;
i f (winner == t rue) {

p a r t i c i p a n t [1] . t r a n s f e r (
a c c o u n t B a l a n c e [p a r t i c i p a n t [0]] +
a c c o u n t B a l a n c e [p a r t i c i p a n t [1]]) ;
} e l s e {

p a r t i c i p a n t [0] . t r a n s f e r (
a c c o u n t B a l a n c e [p a r t i c i p a n t [0]] +
a c c o u n t B a l a n c e [p a r t i c i p a n t [1]]) ;
}

}
. . .

}

Algorithm 6: enforceDisputeResolution()

After generating the two contracts, Alice and Bob should
transform the off-chain contract shown in Algorithm 2 into
bytecode through tools such as Remix or Truffle and then use
the JavaScript program in Algorithm 4 to generate signatures
(tuples of (v,r,s)) with their account private keys and the
bytecode. Please note that all the participants should use the

same version of compiler for the purpose of getting same
bytecode.

In case if Alice or Bob violates the rules before T2, the
game can always be terminated through refundRoundOne() or
refundRoundTwo(). After T2, suppose Alice loses the game,
she should call reassign() to admit this failure before T3 to let
the function transfer both winner’s deposit and loser’s deposit
to winner. If reassign() is not called before T3, the winner will
find the fact that the loser has violated the rules and a dispute
has occurred. Once the dispute happens, after T3, the winner
(say, Bob in this example) should call the deployVerifiedIn-
stance() extra function (Algorithm 5) with the signed copy.
The extra function will first verify the signatures by outputting
an address from bypecode and (v,r,s) and checking whether it is
the signer’s address. After that, the extra function will create a
verified instance from the bytecode and also record the address
of the created instance in the parameter deployedAddr. Thus,
by generating the verified instance from the on-chain contract,
the verified instance can be authorized through the parameter
deployedAddr because no other contract can have the same
address and it is also guaranteed that the verified instance has
been agreed by all the participants. Please note that to create
a contract from an existing contract with only bytecode, we
must use the assembly language in Solidty.

Finally, the winner (i.e., Bob) can call returnDisputeRes-
olution() in the verified instance (see Algorithm 3) with the
address of the on-chain contract (see Algorithm 2). The input
address of the on-chain contract will then allow the verified
instance to return the dispute resolution to the on-chain
contract by invoking the extra function enforceDisputeRes-
olution() (Algorithm 6), which then enforces both winner’s
deposit and loser’s deposit to be transferred to winner and
may also monetarily penalize the dishonest loser if there is a
penalty rule. Here, the deployedAddrOnly modifier will check
msg.sender so that only the verified instance with the address
same as the one recorded in parameter deployedAddr can
leverage enforceDisputeResolution() to change the state of on-
chain contract.

Extra function Gas cost

deployVerifiedInstance() 225082 + reveal()

returnDisputeResolution() 37745

TABLE II: Gas cost

We now present the gas cost for dispute resolution. As
shown in Table II, in case of a dispute, an honest participant
needs to first spend (225082 + cost of reveal()) gas to
deploy the verified instance through deployVerifiedInstance()
and then spend 37745 gas to enforce the resolution through
returnDisputeResolution(). The overall cost is not high when
cost of reveal() is low. However, if reveal() is a heavy function,
it should be mandatory for each participant to pay security
deposit so that the honest participant paying for dispute reso-
lution can receive compensation from dishonest participants.

V. RELATED WORK

Recently, off-chain resources of blockchain have been
widely studied by researchers to improve the performance
of blockchains [2], [5], [8], [9], [10], [13]. Among them,
[5] and [10] are most relevant to our work. In [10], smart
contracts are implemented using hybrid architectures similar
to the hybrid-on/off-chain execution model proposed in our
work. However, the proposed hybrid architectures in [10]
rely on a Trusted Third Party (TTP) as an oracle and thus
the architectures are not completely decentralized. In [5], a
smart contract system named Arbitrum is developed, where
smart contracts are designed to be executed off-chain. As the
system is specially designed for this purpose, it is hard to
generalize the system-level design to existing systems such
as Ethereum. In this paper, instead of treating the use of off-
chain contracts as a system-level design goal, we consider
the hybrid-on/off-chain computation model as an application-
level smart contract design pattern and also as a building
block for enhancing blockchain scalability and privacy. Thus,
the proposed approach is a plug-and-play solution that is
compatible with existing smart contract systems and their
time-tested infrastructure and community. In addition, the
combination of the proposed approach and other system-level
or application-level solutions, such as sharding [1] and zero
knowledge proof [6], can further enhance the scalability and
privacy of the smart contract systems.

VI. CONCLUSION

In this paper, we propose a general hybrid-on/off-chain exe-
cution model of smart contracts, which separates the heavy/pri-
vate functions of a smart contract from the light/public ones to
form an off-chain contract and enables the off-chain contract to
be executed only by the interested participants. The proposed
approach leads to increased saving of computing resources
of the miners and protects sensitive information of a smart
contract in the blockchain. To handle disputes caused by any
dishonest participants, we propose a mechanism that allows
any honest participant to reveal a signed copy of the off-chain
contract so that a verified instance can be created to make
miners enforce the true execution result. Therefore, with the
proposed approach, honest participants always have the ability
to redress and penalize any fraudulent or dishonest behavior,
which incentivizes all participants to honestly follow the
agreed off-chain contract. Our implementation and evaluation
of the proposed approach using an example smart contract
demonstrate the effectiveness of the proposed approach of
using on/off-chain contracts in Ethereum.

REFERENCE

[1] Mustafa Al-Bassam, Alberto Sonnino, Shehar Bano, Dave Hrycyszyn,
and George Danezis. Chainspace: A sharded smart contracts platform.
arXiv preprint arXiv:1708.03778, 2017.

[2] Jacob Eberhardt and Stefan Tai. On or off the blockchain? insights on
off-chaining computation and data. In European Conference on Service-
Oriented and Cloud Computing, pages 3–15. Springer, 2017.

[3] Ethereum market cap. https://coinmarketcap.com/currencies/ethereum/.
[4] ethereumjs-util. https://github.com/ethereumjs/ethereumjs-util.

[5] Harry Kalodner, Steven Goldfeder, Xiaoqi Chen, S Matthew Weinberg,
and Edward W Felten. Arbitrum: Scalable, private smart contracts. In
Proceedings of the 27th USENIX Conference on Security Symposium,
pages 1353–1370. USENIX Association, 2018.

[6] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos
Papamanthou. Hawk: The blockchain model of cryptography and
privacy-preserving smart contracts. In 2016 IEEE symposium on security
and privacy (SP), pages 839–858. IEEE, 2016.

[7] Kovan: Ethereum official testnet. https://kovan.etherscan.io/.
[8] Chao Li and Balaji Palanisamy. Decentralized privacy-preserving timed

execution in blockchain-based smart contract platforms. In 2018 IEEE
25th International Conference on High Performance Computing (HiPC),
pages 265–274. IEEE, 2018.

[9] Chao Li and Balaji Palanisamy. Decentralized release of self-emerging
data using smart contracts. In 2018 IEEE 37th Symposium on Reliable
Distributed Systems (SRDS), pages 213–220. IEEE, 2018.

[10] Carlos Molina-Jimenez, Ioannis Sfyrakis, Ellis Solaiman, Irene Ng,
Meng Weng Wong, Alexis Chun, and Jon Crowcroft. Implementation of
smart contracts using hybrid architectures with on and off–blockchain
components. In 2018 IEEE 8th International Symposium on Cloud and
Service Computing (SC2), pages 83–90. IEEE, 2018.

[11] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.
[12] Neo. https://neo.org/.
[13] Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scal-

able off-chain instant payments. See https://lightning. network/lightning-
network-paper. pdf, 2016.

[14] Smart contracts market research report global forecast to 2023. https:
//www.marketresearchfuture.com/reports/smart-contracts-market-4588.

[15] State of the dapps. https://www.stateofthedapps.com/.
[16] The solidity contract-oriented programming language. https://github.

com/ethereum/solidity.
[17] web3-utils. https://www.npmjs.com/package/web3-utils.
[18] Whisper. https://github.com/ethereum/wiki/wiki/Whisper.
[19] Gavin Wood. Ethereum: A secure decentralised generalised transaction

ledger. Ethereum Project Yellow Paper, 151, 2014.

