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Abstract—Timed release of data is an important security
primitive for various applications. Such timed data release can
be supported using a self-emerging data infrastructure that
protects the data until a prescribed data release time and
automatically releases to the recipient at the release time. While
straight-forward centralized approaches such as cloud storage
services may provide a straight-forward solution to implement
self-emerging data release, unfortunately, they are limited to a
single point of trust and involves a single point of control. In this
vision paper, we discuss and review new decentralized designs of
self-emerging data release systems using large-scale peer-to-peer
(P2P) networks as the underlying infrastructure. We analyze
the design of decentralized self-emerging data release systems
using two P2P network infrastructures, namely Distributed
Hash Tables (DHTs) and blockchains. We demonstrate how
self-emerging data release can be used to support gradual release
of private data in a decentralized infrastructure. Finally, we
present some promising directions of future research on security
primitives and protocols for timed release of private data in
decentralized environments.

I. INTRODUCTION

Timed release of data is an important security primitive
for various applications. Timed data release can be supported
using a self-emerging data infrastructure that protects the
data until a prescribed data release time and automatically
releases to the recipient at the release time. The hidden
private data appears automatically to the data recipient at
the release time without any assistance from the data sender.
Such data are referred to as self-emerging data [30], [31],
[32], [33]. Self-emerging data is widely found in practice.
Examples include secure auction systems (bidding information
needs protection until all bids arrive), copyrights-aware data
publishing (data is automatically released when the copyright
expires), secure voting mechanisms (votes are not allowed
to be accessed until the end of the polling process), and
post/tweet scheduler (content is scheduled to automatically
post at optimal times). In the above examples, self-emerging
data is released in an all-or-nothing manner, indicating that
the complete information carried by the hidden data is
revealed at a single release time. Self-emerging data may
also get gradually released through multiple release times,
allowing the carried information to be gradually revealed
over time. Examples include data of individuals with privacy
requirements that relax over time [28]. For instance, personal
data of individuals (e.g., location trajectory patterns, shopping

patterns, travel history) collected during their lifetime may be
sensitive during the childhood and youth life of an individual,
however, the sensitivity of such data may decrease as the
individual ages and may drop significantly after the end of
the individual’s life and a few decades after the end of the
individual’s life.

Centralized storage systems such as cloud storage services
[1], [3], [4] may provide a simple and straight-forward
approach for implementing self-emerging data release. The
storage service provider may simply keep the sensitive data
until the prescribed release time and make it available
at the release time. However, such a centralized approach
significantly limits the data protection to a single point of trust
and a single point of control. Even in cases when the service
providers are trustworthy, such centralized models may lead
to channels of attacks beyond the control of service providers
for an adversary to breach the security and privacy of the
data. It includes insider attacks [7], [41], external attacks on
the centralized data infrastructure, malware and large-scale
denial-of-service attacks [2], [5].

In this vision paper, we discuss and review new
decentralized designs of self-emerging data release
systems using large-scale peer-to-peer (P2P) networks
as the underlying infrastructure. We analyze the design of
decentralized self-emerging data release systems using two
P2P network infrastructures, namely Distributed Hash Tables
(DHTs) and blockchains. We believe that the properties of
large-scale peer-to-peer (P2P) networks help resolve the
challenges encountered by the previous methods. The key
idea is to securely hide the shares of the key used to encrypt
the data in a Distributed Hash Table (DHT) or a blockchain
network and enable the key shares to automatically appear at
the predetermined release time so that the protected encrypted
private data can be decrypted at the release time. Highly
distributed solutions for self-emerging data using large-scale
P2P networks such as Distributed Hash Tables (DHTs)
networks prevent the adversary from obtaining the shares of
the encryption key dispersed in the P2P network before the
legitimate release time. The routing mechanisms route the
encryption key on the infrastructure in a deterministically
pseudorandom manner making it automatically appear at
the release time while making it harder for the adversary to
access it prior to the release time. Compared to a centralized



key storage scheme, this approach using large-scale P2P
networks significantly increases the attack resilience offered
by the scheme.

Blockchain technologies provide additional support for
decentralized implementation of self-emerging data through
the use of smart contracts (e.g. Ethereum blockchain
networks). Recent designs have developed a credible and
enforceable smart contract for supporting self-emerging data
release. The smart contract employs a set of Ethereum peers
to jointly follow the proposed timed-release service protocol
by allowing the participating peers to earn the remuneration
paid by the service users. Through a careful design of the
smart contract based on game theory, often the best choice of
any rational Ethereum peer in such techniques is to always
honestly follow the correct protocol.

Unlike traditional data infrastructures, the notion of timed
data release in self-emerging data infrastructures allows to
support dynamic utility of self-emerging data in which
data users can access finer information from the published
data as the data becomes older and as data privacy
requirements change over time. We demonstrate this feature of
self-emerging data infrastructures through a suite of dynamic
data utility techniques for self-emerging data based on data
privacy models. While data encryption techniques provide
all or nothing protection on the data, dynamic data utility
techniques ensure a more gradual release of information as
the data ages and as privacy requirements change.

The rest of the paper is organized as follows. In Section
II, we discuss the background and preliminaries about
self-emerging data and gradual data release. In Section III,
we discuss the state-of-the-art techniques for supporting
self-emerging data using Distributed Hash Table (DHT)
networks. Section IV discusses techniques for self-emerging
data using smart contracts in peer-to-peer blockchain
networks. We demonstrate the application of self-emerging
data for gradual data release in Section V. In Section VI, we
discuss related work. We present future research directions in
Section VII and we conclude in Section VIII.

II. BACKGROUND AND PRELIMINARIES

In this section, we discuss the key ideas behind
self-emerging data and present the challenges of building
a self-emerging data infrastructure to support timed-release
of private data. We also introduce the concepts related to
supporting dynamic utility of self emerging data based on data
privacy models.

A. Self-emerging Data Infrastructure

Supporting self emergence of data involves encrypting the
data and ensuring that the encryption key is destroyed and
remains unavailable until the release time. The encryption
key automatically appears at the release time and makes the
data self-emerge at the release time. As discussed earlier,
a straight-forward approach to implementing self-emergence
of data would be to store the encryption key on a trusted
third party server which protects the encryption key until the

release time and makes it available precisely at the release
time. However, such a straight-forward approach suffers from
a single point of trust. Specifically, the adversary can obtain
the key prior to the release time which can violate the intended
privacy provided by self-emerging data. Recent designs
of self-emerging data systems employ a highly distributed
solution using Distributed Hash Table (DHT) networks [18],
[50] and Blockchains [42], [54] that prevent the adversary
from obtaining the shares of the encryption key from the
self-emerging data infrastructure before the legitimate release
time. The choice of DHTs and Blockchains as the underlying
storage system is motivated by the facts that DHTs and
Blockchains are huge-scale geographically distributed systems
that make complete decentralization possible and they are
inherently designed to be reliable and robust to failures. Here,
the encryption key is split into multiple fragments through
Shamir’s secret share scheme [49] and erasure coding [53]
and routed along a pre-determined pseudorandom path from
the sender to the receiver so that the key can be recovered
exactly at the release time by the receiver.

A self-emerging data infrastructure consists of four major
entities, namely the data sender, the data receiver, the data
infrastructure network and the cloud, shown in Figure 1.

- Data sender: The data sender is the entity that wants to
send data to the data receiver. Specifically, the data sender
wants to send a message out at start time ts and requires it
to be accessible by the data receiver only after the release
time tr, where ts < tr. In a self-emerging data release
system, the data sender, Alice, encrypts her message with a
secret key and then sends the secret key to the self-emerging
data infrastructure and the encrypted message to the cloud
respectively at start time. After ts, there is no further
involvement required from Alice.

- Data receiver: The data receiver is an entity that wants
to get access to the message sent by the data sender. In a
self-emerging data release system, the data receiver, Bob,
can get the encrypted message from the cloud at any time
after ts. However, he should be allowed to get the secret
key from the self-emerging data infrastructure only after
the data release time, tr so that the plain text message is
only available to him after tr. Bob may start to extract the
secret key from the self-emerging data infrastructure before
tr, which makes him an adversary in that case.

- Self-emerging data infrastructure network: A distributed
self-emerging data infrastructure network is required to hold
and hide the secret key during the time period tr−ts, defined
as the emerging time period T . A distributed self-emerging
data infrastructure network can be constructed out of a
peer-to-peer distributed hash table network (DHT) or a
peer-to-peer blockchain network. This distributed network
may be either a public network such as a public DHT
or a public blockchain (for public self-emerging data
infrastructures) or a private blockchain [6] that operates
within the Intranet of an enterprise (for private self-emerging
data infrastructures). To hold the secret key, during T ,
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Fig. 1: Self-emerging Data Infrastructure

the self-emerging data infrastructure network should protect
and maintain the existence of the secret key and prevent
the loss of it. In order to hide the secret key within the
self-emerging data infrastructure, the peer-to-peer network
should prevent any possible attacks on the secret key from
being extracted by any entities before time, tr. In some
cases, the adversary may even include Bob, who is the
actual recipient. To ensure sufficient attack resilience, the
self-emerging data infrastructure may split the secret key
into n key shares through Shamir secret share scheme [49]
and route them along carefully determined routing paths
such that the key shares are transmitted from the source to
the intended recipient with high attack resilience, preventing
an adversary from accessing it before the release time, tr.

- Cloud: A cloud storage is required to store the encrypted
data during T . The encrypted data is always accessible by
the authenticated data receivers.

We note that a self-emerging data infrastructure needs to
demonstrate a strong defensive performance towards powerful
adversaries controlling a fraction of the nodes in the distributed
data infrastructure network. An adversary may try to forcibly
extract the key before the actual release time. Such adversaries
can also sabotage the intended goal in multiple ways leading
to attacks that could either make the hidden data appear before
the prescribed release time (release-ahead attack) or destroy
the hidden data altogether (drop attack). The release-ahead
attack aims to furtively extract the secret key from the
self-emerging data infrastructure before the release time, tr
and uses it to decrypt the encrypted data stored in the cloud,
thus compromising the confidentiality of the private data. In a
drop attack, the adversary aims to prevent the encryption key
to be received by the legitimate receiver to decrypt the data in
the cloud at release time tr. To launch an effective drop attack,
the adversary may drop the secret key shares from reaching
the intended recipients at the release time by controlling a
significant number of nodes in the distributed peer-to-peer data
infrastructure network. A successful drop attack will make the
encrypted data inaccessible even after the release time tr.

B. Supporting Dynamic Utility of Self-emerging Data

A self-emerging data infrastructure can provide support for
dynamic utility of self-emerging data. Unlike data encryption
techniques that only support all or nothing protection on
the data, dynamic data utility techniques can ensure a more
gradual release of information as the data ages in the
underlying self-emerging data infrastructure.
- Dynamic Data Utility based on Gradual Data release:

One approach to supporting dynamic utility of self-emerging
data is to limit the data release based on data privacy
models [13], [14] and gradually increase the disclosure as
privacy requirements change. Such time-varying data utility
would allow data analysts and data users to access finer and
richer information on the self-emerging data as the data gets
older. For instance, in a self-emerging data infrastructure,
the self-emerging data may provide a lower utility at time
t1 based on a stricter ε1- differential privacy [13], [14] and
a higher utility at time t2 based on a relaxed ε2- differential
privacy where t1 < t2 and ε1 < ε2. To effectively
support such dynamic data utility, a self-emerging data
infrastructure should be able to securely store and facilitate
the timed-release of information while guaranteeing the
confidentiality, integrity and availability of the data until the
release time.

- Dynamic Utility using Group and Multi-level Data
Disclosure: Self-emerging data can also support dynamic
utility based on group and multi-level data disclosure. A
good example of group data disclosure can be explained
using a dataset describing the set of drugs purchased by
patients living in different zipcodes. Group information
disclosure in general may refer to some information about
a group of individuals in a dataset such as the total
number of ‘psychiatric’ drugs purchased by patients living
in zipcode 15206. Dynamic data utility based on group and
multi-level disclosure allows data users to access the data
at different access levels as the data ages. For example, in
a dataset describing the set of drugs purchased by patients
in different zipcodes of the country, initially the data users
may be allowed to obtain group information for only larger



groups of the population (e.g., the number of purchases of
‘psychiatric’ drugs in the city of ‘Pittsburgh’). As the data
gets older, the self-emerging data infrastructure may release
access to smaller population groups (e.g., the number of
‘psychiatric’ drug purchases in the zipcode ‘15206’ within
’Pittsburgh’). Finally, when the data sufficiently ages, the
self-emerging data infrastructure may release access to even
individual’s information (e.g., how many ‘psychiatric’ drugs
were purchased made by ‘Bob’ ?).

The focus of our research along these dynamic data utility
techniques is to develop new methods and schemes that can
support such gradual release of information in a self-emerging
data infrastructure.

III. SELF-EMERGING DATA USING DHT NETWORKS

In this section, we present and discuss the state of the art
techniques for supporting self-emerging data using Distributed
Hash Table (DHT) networks. We begin by introducing the key
concepts behind DHT networks.

A. Distributed Hash Table (DHT) Networks

DHT protocols enable efficient node lookup and message
transfer services for large-scale P2P networks. In classical
structured DHT overlay protocols such as Chord [50], each
node maintains links to a few neighbors (maximum O(log n)
neighbors in a network of size n). Messages are routed
and retrieved as (key,value) pairs. Specifically, a message
corresponding to a given key can be routed from any node
in the network to a node owning the ID hash closest to the
key within O(log n) hops. DHT also allows nodes in the
P2P network to efficiently communicate and transfer data with
other nodes. A DHT node can be considered as a machine with
abilities of storage and communication and with the freedom
to join and leave the network at any time. In addition, a
DHT node has the ability to communicate with other nodes
through private channels established with basic cryptography
techniques and also the ability to locally store data received
from other nodes.

B. Timed Data Release using DHT Networks

By leveraging the features of DHT, we have recently
developed DHT-based systems [30], [31] for supporting
self-emerging data that ensure that private data provided
as input by a DHT node (i.e., sender) is securely hidden
and inaccessible until the release time. It enables the
self-emergence of the private data to a target DHT node (i.e.,
recipient) at the release time. More concretely, the system
allows private data be packaged, split into multiple fragments
through erasure coding [53] and secretly routed among the
DHT nodes along a pre-determined pseudo-random routing
path pattern to the recipient so that the data can be recovered
exactly at the release time by the recipient.
Adversary models: We note that the security of the system
can be significantly challenged by adversaries controlling a
sizable proportion of the DHT network. When a sufficient
number of DHT nodes are compromised by an adversary,

s/he can either release the hidden data before the prescribed
release time (release-ahead attack) or destroy the hidden
data altogether (drop attack). These two specific attacks
in combination with traditional churn issues [51] in DHTs
constitute significant challenges to the design of the system.
Thus, ensuring high resilience to churn and to release-ahead
attacks and drop attacks is a central objective of the system
design. In [30], DHT nodes are divided into two categories,
namely honest nodes and malicious nodes. In short, honest
nodes may join and leave the network at any time but they
will follow the designed protocols as expected when they
are in the network. In addition, data locally stored at honest
nodes are unavailable to the adversary. In contrast, malicious
nodes are the ones controlled by the adversary and these nodes
can arbitrarily violate the designed protocols and data locally
stored at these nodes are known by the adversary.

At the core of the technical solutions for building the
expected system over DHT is the use of redundancy. DHT
nodes go in and out of the underlying P2P network frequently
and there is no general and effective approach to enforce or
incentivize behaviours performed by DHT nodes. As a result,
requesting a single DHT node to store the hidden data is not a
robust way of hiding private data in the DHT network because
the data will get lost once that DHT node leaves the network.
Therefore, to make data survive in a highly dynamic DHT
network, data needs to be replicated to make the replicas
get stored at different nodes so that the original data can
still be available at the release time even if a fraction of
the storage nodes become unavailable. By jointly considering
challenges of churn and attacks, the protocols designed in [30]
leverage erasure coding [53] to split private data into a group
of fragments and allows the fragments to keep moving through
the DHT nodes without sticking to fixed positions.

The protocols consist of three components, namely routing
path construction, initial package generation and package
routing, to be implemented in a sequential order. Specifically,
at start time ts, the sender enters DHT network as a node.
It first locally determines routing path pattern based on the
adopted pattern construction scheme and pseudo-randomly
selects DHT IDs to fill in the pattern. Then, based on the
pattern and selected IDs, the sender node locally generates
the initial data packages. Finally, it sends the initial packages
out and the packages will be routed and processed along the
paths to deliver the secret key to the recipient at the release
time tr.

Based on the adopted routing path construction schemes,
three different protocols were proposed in [30] and all of
them are based on the erasure coding mechanism [53]. As a
common mechanism to protect data, erasure coding [53] can
divide a data package into m fragments and re-code them into
n fragments so that the package can be recovered from any
m fragments (m ≤ n).

- One-hop path pattern: This baseline protocol applies
erasure coding to establish multiple one-hope paths between
sender and recipient to guarantee attack resilience.



Fig. 2: Blockchain-based decentralized self-emerging data release system

- Adjusted one-hop path pattern: By taking dead nodes
(churn) into account, this scheme tries to make the system
resilient to churn issues by estimating the number of dead
nodes and adjusting the parameters of erasure coding based
on the estimation.

- Multi-hop path pattern: By dividing the entire emerging
time period T = ts − tr into several shorter time periods,
this scheme iteratively implements the erasure coding
mechanism to route the fragments of secret key so that
the loss of fragments during each shorter time period can
be suppressed and the lost fragments can be recovered by
multiple usages of erasure coding.

The performance of these three schemes were compared
in [30] by measuring the release-ahead attack resilience, Rr

as the probability that an adversary fails to restore the secret
key before the legitimate release time tr, and drop attack
resilience, Rd as the probability that an adversary fails to
prevent the secret key from being restored by the recipient at
the release time tr. To evaluate the attack resilience, a DHT
node is marked as malicious with probability p. To evaluate
the churn resilience, each DHT node was set with a lifetime
that follows an exponential distribution. The experimental
results demonstrate that the schemes are resilient to both
release-ahead attack and drop attack as well as to attacks that
arise due to traditional churn issues in DHT networks. More
concretely, all the three schemes work well for short emerging
time period T . The adjusted one-hop scheme maintains good
performance for medium T , but only the multi-hop scheme
works well for long and very long T . However, due to the
inherent design of DHTs, we consider that it may be hard
to enforce the peers to honestly follow the protocol without
any violations. Therefore, the DHT-based system proposed
in [30], [31] mainly relies on the redundancy and recovery
mechanism to make the system resilient to attacks and churn,
which could result in low efficiency and high storage and
communication cost. In the next section, we analyze another
design of decentralized self-emerging data release systems,
which leverages the decentralized consensus and monetary
incentive/deposit offered by blockchain to enhance protocol
enforceability.

IV. SELF-EMERGING DATA USING BLOCKCHAIN SMART
CONTRACTS

In this section, we discuss the state-of-the-art techniques
for self-emerging data using smart contracts in peer-to-peer
blockchain networks. We begin by introducing blockchains.

A. Blockchains

A blockchain is a distributed ledger maintained by a
P2P network, which publicly records data as a chain
of data blocks with each block containing the hash of
its previous block. To falsify blockchain data, adversaries
must hold enormous resources (e.g., computation power in
Proof-of-Work consensus protocol [42], amount of stake in
Proof-of-Stake consensus protocol [26]) to compete with the
resources owned by the rest of network. The difficulty to
successfully launch such attacks ensures that blockchain data
are verifiable and permanent and thus provides decentralized
trust among nodes in P2P networks.

B. Timed Data Release using Blockchains

Recent research on self-emerging data [32], [33] employs
a blockchain infrastructure [54] that offers more robust
and attractive features including decentralized democratized
trust and higher fault tolerance. Similar to the DHT-based
approach, the blockchain-based system also makes private
data be protected until a prescribed data release time and be
automatically released to the legitimate recipient at the release
time, even if the data sender goes offline. In a blockchain
network, such as Ethereum, a blockchain node may imply two
types of nodes, namely an External Owned Account (EOA)
controlled by a user through a private/public key pair or a
Contract Account (CA) controlled by a smart contract. Due
to the different properties associated with the two types of
recipients, such as the abilities of actively participating in
the protocol or locally storing data, the underlying protocols
designed for the self-emerging data release system should
also be different. Therefore, the blockchain-based system
investigates the scenario that both the data sender and recipient
are EOA accounts managed by users. In the rest of this
section, for ease of presentation, we denote the data sender



and recipient as S and R while the rest of EOA accounts as
P that represent peers in the Ethereum network.

There are also major differences between assumptions
made in DHT-based and blockchain-based systems in terms
of adversary models. Instead of following the assumption
made in Section III that the peers (i.e., DHT nodes or EOA
accounts) are either honest or malicious, the unique feature of
blockchains produced by the blending of smart contracts and
cryptocurrency makes it possible to assume that all the peers
are adversaries with rationality[12], [19], [20], [43]. In DHT,
due to the lack of trust among nodes, there is no possibility that
one node can enforce another node to do anything. However,
in Ethereum blockchain, since the decentralized trust has been
established through blockchain, each smart contract can be
considered as a (virtual) trusted third party. Then, the protocols
in the blockchain infrastructure could be programmed as
enforceable smart contracts [54]. Through careful design of
the smart contract, it is possible to make rational participants
follow incentives by penalizing violators through confiscation
of their security deposits locked in smart contracts. More
concretely, by asking each participant of a smart contract to
deposit a certain amount of cryptocurrency as the security
deposit to the contract, any fraudulent or dishonest behavior
that violates the agreements recorded in the contract will make
the violator be monetarily penalized, which incentivizes all
rational participants to honestly follow the contract.

The smart contract implementation in [33] recruits a set of
Ethereum peers to jointly follow the proposed self-emerging
data release service protocol allowing the participating peers to
earn the remuneration paid by the service users. The recruited
peers need to pay security deposits so that any detected
misbehaviors can result in the deposits being confiscated.
The problem was modeled as an extensive-form game with
imperfect information to protect against post-facto attacks
including drop attack and release-ahead attack. Through
careful design of the smart contract based on game theory,
it was demonstrated that the best choice of any rational
Ethereum peer is to always honestly follow the correct
protocol. Specifically, the protocol proposed in [33] consists
of four key components:
- Peer registration: At any point in time, a new peer P can

register by paying a security deposit to join a contract by
adding into the registration list maintained by the contract.
This process makes the entire network learn that the peer
has registered and can provide services during its prescribed
working times. For example, in Figure 2, we find that P1,
P2 and P3 have been registered before the setup time ts.

- Service setup: At any point in time, a sender S can
pay remunerations and submit peers selected from the
registration list to a contract C and set up a self-emerging
data release service. This process makes the service to be
recorded by a service list maintained by the contract, C. In
Figure 2, we find that sender S requests a service at ts with
selected peers P1, P2 and P3.

- Service enforcement: After a service has been set up, the
participants, namely sender S, recipient R and peers, P s

should follow the protocol honestly in order to render the
service successfully. Behaviors violating the protocol will
lead to service failure and such misbehaviors are detected
and penalized by the contract. In Figure 2, the process of
routing the encrypted secret key from S to R through the
path formed by the three peers is enforced by the contract
C through paying remunerations for honest behaviors while
confiscating deposits for misbehaviors detected by C.

- Reporting mechanism: To effectively detect misbehaviors
in the protocol implemented in the smart contract, the
reporting mechanism incentives peers to report misbehaviors
by announcing an award in the contract.
The efficacy and attack-resilience of the proposed

techniques were validated in [33] through rigorous analysis
and experimental evaluation on the Ethereum official test
network. The experiments demonstrate the low monetary cost
and the low time overhead associated with the proposed
approach and validate its guaranteed security properties.

While our discussions in Sections III and IV have primarily
focused on design techniques for supporting self-emerging
data using DHT and blockchain networks, in the next section,
we discuss and demonstrate an important application of
self-emerging data, namely supporting dynamic data utility
using gradual data release.

V. GRADUAL RELEASE OF SELF-EMERGING DATA

Unlike traditional data infrastructures, the notion of timed
data release in self-emerging data infrastructures allows to
support dynamic utility of self-emerging data in which data
users can access finer information from the published data
as the data becomes older and as data privacy requirements
change over time. While data encryption techniques provide
all or nothing protection on the data, dynamic data utility
techniques ensure a more gradual release of information as
the data ages and as privacy requirements change.

In general, there are three ways to provide private data input
to the self-emerging data release system:
Plaintext: As the basic option, the sender of private data
can directly input the plaintext of private data to the system.
Since the data needs to be stored by the P2P nodes and also
routed among the nodes, such a straightforward solution may
result in high cost of storing and transferring large-size private
data, which in turn affects both security and scalability of the
self-emerging data release system.
Encryption key: To eliminate the drawbacks of using
plaintext, one option is to encrypt the private data with
a key and only input the encryption key to the system.
Such an encryption-based scheme can be adopted in both
all-or-nothing release and gradual release models. Specifically,
in the all-or-nothing release, private data only needs to be
released once. Therefore only a single snapshot of encrypted
data needs to be maintained by either data sender or recipient
in order to make the data available at the time when the
encryption key is released. In Figure 3, we show a framework
of using encryption keys for gradual release that was proposed
in a recent work [35]. In this framework, at the initial time



Fig. 3: Using encryption keys for gradual release of private data

point tA, the data owner (i.e., sender) can use a specific
privacy-preserving data perturbation technique (e.g., [8], [9],
[10], [13], [15], [23], [25], [36], [21]) over the private data
for multiple times so that multiple snapshots of the private
data with different perturbation levels (and thus different
utility levels) can be generated. After encrypting all the
snapshots with different encryption keys (denoted as EKey),
the encryption keys (except EKey1) and encrypted snapshots
should be sent into the decentralized self-emerging data release
system and a cloud storage platform respectively. Specifically,
EKey1 can be directly used by the data user (i.e., recipient)
to get the most heavily perturbed snapshot. After that, the
data privacy level may decrease as time goes on. At a future
time point tB , the encryption key EKey2 may be released by
the decentralized self-emerging data release system, allowing
the data user to decrypt the moderately perturbed snapshot in
cloud and obtain more useful information from it. Similarly,
at an even later time point tC , the released encryption key
EKey3 will allow the user to gain further information from
the minimally perturbed snapshot.

Perturbation key: The key idea behind the perturbation key
approach is to employ a new class of reversible perturbation
techniques that can use perturbation keys (denoted as PKey)
to pseudo-randomly perturb data so that these keys, once
released in future, can be used to directly de-perturb the single
snapshot held by the user to reduce its perturbation level. The
study in [35] found that a major limitation of using encryption
keys is the cost for storing multiple encrypted snapshots of the
dataset. For example, if Amazon S3 cloud storage service is
used (0.023 USD/GB per month) to release a 100 GB snapshot
each month for one year (i.e. release the first snapshot in the
first month and store the remaining eleven snapshots and in
the second month, release the second snapshot and store the
remaining ten snapshots etc.), the storage cost will be close
to 150 USD. Such a high storage cost is unnecessary and
instead an alternate cost-effective approach can be employed
as shown in Figure 4. The perturbation level of the snapshots
is reversible here as it can be reduced by perturbation keys in
future[35] . In Figure 4, at tA, with the reversible perturbation
techniques, the perturbation key PKey2 pseudo-randomly
perturbs the minimally perturbed snapshot into the moderately
perturbed snapshot. Then, PKey1 further pseudo-randomly
perturbs the moderately perturbed snapshot to create the
heavily perturbed snapshot. At this phase, all the snapshots

except the most heavily perturbed one can be deleted and only
the encrypted heavily perturbed snapshot needs to be stored in
the cloud. Also, the data owner needs to send the perturbation
keys into the decentralized self-emerging data release system
while sending the encryption key of the heavily perturbed
snapshot directly to the data user. After that, at future time
point tB , with the released PKey1, the user can de-perturb the
heavily perturbed snapshot to obtain the moderately perturbed
snapshot. Similarly, at tC , the minimally perturbed snapshot
can be recovered from the moderately perturbed snapshot
using the released PKey2. Compared with the approach of
using encryption keys, this technique needs to maintain only
one snapshot as the ‘seed’ of all other snapshots and thus
significantly reduces the cost.

Recently, there have been several efforts on implementing a
cost-effective approach of using perturbation keys to support
gradual release of data. This problem has been studied in the
context of two kinds of data namely association data [35], [44]
and location data [29], [34]. At the core of these techniques is
the use of pseudo-randomness created by perturbation keys
in the privacy-preserving data perturbation mechanisms. In
order to make the process of data perturbation reversible,
perturbation keys could be applied as the seeds of a generator
of pseudo-randomness and replace any randomness involved
in conventional data perturbation mechanisms with such
pseudo-randomness so that the same keys, when released by
the self-emerging data release system, could be used by the
recipients to reverse the perturbation process and reduce the
perturbation level.

Association data: Private association data can be perturbed
and published via privacy-preserving data disclosure schemes,
where the raw data is perturbed to meet the privacy
requirements. However, conventional privacy-preserving data
disclosure schemes focus on publishing a single snapshot
of a dataset that offers a fixed privacy level that fails to
directly support data release in cases when data users have
different levels of access on the published dataset [13], [15],
[23], [25]. In order to cost-effectively leverage gradual release
of association data, techniques for multi-level reversible
association data perturbation have been proposed in [35], [44],
[45]. These techniques use perturbation keys to control the
sequential generation of multiple snapshots of the perturbed
data to offer multi-level access based on privacy levels.
It requires only the perturbation keys to be sent into the



Fig. 4: Cost-effective gradual release of private data by using perturbation keys

self-emerging data release system while only a single snapshot
of perturbed dataset needs to be maintained.
Location data: Reversible perturbation techniques for location
data can also be used for supporting gradual data release.
In general, location anonymization refers to the process of
perturbing the exact location of users as a spatially cloaked
region such that a user’s location becomes indistinguishable
from the location of a set of other users. Recent techniques
called ReverseCloak [29], [34] provide a new class of
reversible spatial cloaking mechanisms that effectively support
multi-level location privacy protection. These techniques allow
de-anonymization of the cloaking region when corresponding
perturbation keys are released to the data users in the
future through the self-emerging data release system. Such
techniques are shown to be highly efficient and scalable even
while supporting the reversibility feature.

VI. RELATED WORK

Releasing private data to the future is a challenging
research topic that has intrigued researchers for more than
two decades. Timed-Release Encryption (TRE) was first
proposed by May [39] in 1993. The TRE schemes can be
mainly classified into two groups, namely time-lock puzzle
scheme [16], [47] and third party scheme [39], [47]. In 2003,
a non-interactive TRE scheme[40] has been proposed based
on quadratic residues (QR-TRE). Here the time server used
in the approach requires to be trusted. The main drawback
with these approaches is that they require a trusted centralized
server (a single point of trust). Since then, even though more
efficient models and extensions were developed [11], [24],
[27], most of them require the time server to be trusted
which becomes a security bottleneck to the overall system.
Furthermore, requiring to solve a time-lock puzzle for each
timed data release is not only computationally expensive but
also such an approach is not scalable to a large-scale data
infrastructure. In contrast, decentralized self-emerging data
infrastructure does not involve a central point of trust and is
highly scalable, involving only a modest computational and
data transfer cost compared to these cryptographic solutions.

The problem of timed release of data using blockchain
as a reference time clock has attracted the attention of
the cryptographers [22], [37]. In Bitcoin [42], the difficulty
of PoW is diversely adjusted to make average generation
time of each block to be ten minutes, which makes

blockchain to be a reference time clock with correctness
guaranteed by the entire distributed network. By combining
witness encryption [17] and blockchain [22], [37], one can
leverage the computation power of PoW in the blockchain
to decrypt a message after a certain number of new blocks
have been generated. While this is an interesting idea
based on cryptography, current implementations of witness
encryption are far from practical, requiring an astronomical
decryption time estimated to be 2100 seconds [37]. In
contrast to these cryptographic solutions, the key idea
behind decentralized self-emerging data infrastructures is
to leverage the huge scalability, proof-of-work (PoW) and
distributed ledger features of P2P blockchain networks to
develop a scalable self-emerging data release protocol. By
combining the attack-resilience and provable correctness and
stability of the self-emerging data release protocols with
blockchains, decentralized infrastructures provide a highly
practical distributed system guaranteeing security, scalability
and computational cost-efficiency for timed data release.

Current data privacy solutions are limited to the static
notion of privacy and do not consider the time-varying
aspect of privacy requirements supported through gradual
release of self-emerging data. While both differential privacy
and k-anonymity models have been extensively studied for
sensitive data publication [13], [14], [48], [52], [38], recent
work has developed solutions to support multi-level privacy
[29], [46], [34] and group privacy [45] with static privacy
requirements. The work closest to the dynamic data utility
techniques supported by self-emerging data is [28] which
proposes an optimized differentially private data release
for releasing information after users relax their privacy
requirements. These techniques primarily aim to improve
query accuracy in an interactive data release setting when a
privacy requirement is relaxed. Moreover, they are centralized
approaches involving a single point of trust. In contrast, a
self-emerging data that allows a gradual release of information
supports dynamic data utility using a timed data release model.

VII. FUTURE RESEARCH DIRECTIONS

Future research on self-emerging data infrastructures may
develop techniques for enforcing dynamic controls on the
protected data, including techniques for changing access rights
and access privileges in real-time. For instance, the original
data may be released into the data infrastructure to be released



at a certain point of time and at a later point in time, the data
owner may decide to change the time of release. A dynamic
access control will allow such changes in the self-emerging
data release protocol. Similarly, a data owner may want to
revoke access to a self-emerging data after it is published
in the data infrastructure. These features will require new
techniques for real-time access revocation and methods to
support real-time modifications of the data release time in
the self-emerging data infrastructure. Such techniques will
enable the infrastructure to speed up and slow down the
data emergence based on dynamically changing preferences.
Similarly, an additional dynamic control feature would be
to provide an ability to release self-emerging data based on
external event triggers. Such an event driven mechanism will
allow protected data to be released during an emergency or
critical event based on the event-based access rights set by the
data owner. Another direction of future research may address
an important challenge in blockchain-based self-emerging data
infrastructure solutions namely to minimize the gas cost. In
Ethereum, any transaction that creates new smart contracts or
calls functions of existing smart contracts will spend gas that
costs real money. A possible approach to tackle this problem
is to differentiate old service providers from new service
providers by establishing a trust management mechanism that
leverages the service history of each provider to compute a
trust score. The number of involved service providers can then
be dynamically adjusted based on their trust scores in order
to reduce the number of selected service providers when most
of them maintain high trust scores.

VIII. CONCLUSION

In this vision paper, we reviewed and analyzed new
decentralized designs of self-emerging data release systems
using two kinds of large-scale peer-to-peer (P2P) networks
namely Distributed Hash Tables (DHTs) and blockchains. The
timed data release system design using DHTs leverages the
efficient lookup service of DHT for securely storing and
routing the self-emerging data in the DHT network before
a prescribed data release time. However, due to the lack
of ways to enforce the required protocol behaviors by the
peers in the DHT, the DHT-based system usually needs
complex routing paths involving a large number of nodes
to offer sufficient data redundancy. To resolve this issue,
the timed data release system using blockchains leverages
the decentralized trust and the native cryptocurrency offered
by blockchains to enforce that peers honestly follow their
agreements through cryptocurrency-driven monetary incentive
and penalty. With the assumption that all peers are rational, the
protocols designed based on game theory can make rational
nodes choose to honestly comply with the protocols. We
also reviewed and analyzed new mechanisms for supporting
cost-effective gradual release of self-emerging data in a
decentralized infrastructure to support dynamic utility of data.
While data encryption techniques provide all or nothing
protection on the data, dynamic data utility techniques ensure

a more gradual release of information as the data ages and as
privacy requirements change.
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