
Reversible Data Perturbation Techniques for
Multi-level Privacy-preserving Data Publication

Chao Li, Balaji Palanisamy, Prashant Krishnamurthy

University of Pittsburgh
{chl205,bpalan,prashk}@pitt.edu

Abstract. The amount of digital data generated in the Big Data age is
increasingly rapidly. Privacy-preserving data publishing techniques based
on differential privacy through data perturbation provide a safe release
of datasets such that sensitive information present in the dataset cannot
be inferred from the published data. Existing privacy-preserving data
publishing solutions have focused on publishing a single snapshot of the
data with the assumption that all users of the data share the same level
of privilege and access the data with a fixed privacy level. Thus, such
schemes do not directly support data release in cases when data users
have different levels of access on the published data. While a straight-
forward approach of releasing a separate snapshot of the data for each
possible data access level can allow multi-level access, it can result in
a higher storage cost requiring separate storage space for each instance
of the published data. In this paper, we develop a set of reversible data
perturbation techniques for large bipartite association graphs that use
perturbation keys to control the sequential generation of multiple snap-
shots of the data to offer multi-level access based on privacy levels. The
proposed schemes enable multi-level data privacy, allowing selective de-
perturbation of the published data when suitable access credentials are
provided. We evaluate the techniques through extensive experiments on
a large real-world association graph dataset and our experiments show
that the proposed techniques are efficient, scalable and effectively sup-
port multi-level data privacy on the published data.

1 Introduction

Rapid advancements in data mining and data analytics techniques have made
it possible to extract insights previously considered impossible. There is thus a
significant incentive for collection and analysis of user information, some of which
could be potentially sensitive and private [3, 8]. Data Privacy is a crucial barrier
to data analysis due to privacy risks [1, 24]. Private data often arises in the form
of associations between entities in real world such as medicines purchased by
patients in a pharmacy store, films rated by users in a movie rating website or
products purchased online by users. Such real-world associations are commonly
represented as large, sparse bipartite graphs [5] with nodes representing the
entities (e.g., patients and medicines) and edges representing the associations
between them (e.g., medicines purchases by patients).

Privacy-preserving data disclosure schemes aim at publishing sensitive datasets
such that the private information contained in the published data can not be in-
ferred. These techniques primarily perturb the raw datasets to meet the privacy
requirements before the data is published. While there have been several efforts
on privacy-preserving data publishing in the past, most solutions have focused on
publishing a single snapshot of a dataset that offers a fixed privacy level with the
assumption that all users of the data share the same level of privilege to access
the data [7, 9, 12, 13, 16, 17, 20–22]. Here a privacy level may directly correspond
to an access privilege level. Hence, such schemes do not directly support data
release in cases when data users have different levels of access on the published
dataset.

In this paper, we develop a set of reversible data perturbation techniques
for large bipartite association graphs that use perturbation keys to control the
sequential generation of multiple snapshots of the perturbed data to offer multi-
level access based on privacy levels. We assume that sensitive information in a
dataset may arise either as: (i) an individual sensitive value indicating an individ-
ual’s private information (e.g., did buyer ‘Alice’ purchase the medicine ‘Citalo’?)
or (ii) a statistical value representing some sensitive statistics about a group/sub-
group of individuals (e.g., the total number of antidepressant medicines pur-
chased by buyers in a given neighborhood represented by a zipcode). In many
real-world scenarios, users of a dataset may have different privileges and may
need to access the same dataset at different privacy/utility levels requiring multi-
level access on the published data. For example, a data owner may prefer to share
a sensitive dataset with a reputed data analytics team with a low degree of per-
turbation. However, the same data owner may release the dataset with a higher
level of perturbation to a less privileged data analyst and the data may be dis-
closed to the general public with an even higher level perturbation to protect
the data privacy further. The proposed reversible data perturbation schemes en-
able multi-level data access, allowing selective de-perturbation of the published
dataset to reduce the degree of perturbation when suitable access credentials are
provided. We evaluate the proposed techniques through extensive experiments
on a large real-world association graph dataset. Our experiments show that the
proposed techniques are efficient, scalable and effectively enable multi-level data
privacy on the published data.

The rest of the paper is organized as follows. We introduce the key concepts
and the differential privacy model in Section 2. The proposed reversible data
perturbation techniques is discussed in Section 3. We present the experimental
evaluation of the proposed techniques in Section 4. The related work is discussed
in Section 5 and we finally conclude in Section 6.

2 Concepts and models

In this section, we first present the general idea behind the multi-level privacy-
preserving data publishing problem. We then introduce the graph representation
of association data used in our work and briefly review the notion of differential
privacy.

(a) Conventional data per-
turbation

(b) Reversible data perturbation

Fig. 1: Data perturbation schemes to support
multi-level privacy-preserving data publication

2.1 Multi-level Data Access using Reversible data perturbation

Privacy-preserving data publishing (PPDP) schemes are designed to prevent
the inference of sensitive information in published datasets from data users ac-
cessing the published information. Dataset owners use privacy-preserving data
publishing (PPDP) techniques to perturb their datasets prior to publishing. In
many real-world scenarios, users of a dataset may have different privileges and
may need to access the same dataset at different privacy/utility levels requiring
multi-level access on the published data. The multi-level privacy-preserving data
publishing requirement can be accomplished with a straight-forward approach
of releasing a snapshot of the dataset for each privacy level using conventional
data perturbation techniques such as differential privacy [7]. In the example
shown in Figure 1(a), the data owner is willing to share a minimally perturbed
snapshot of the data with data user C and wants to share a moderately per-
turbed snapshot with data user B and a heavily perturbed snapshot with data
user A. The perturbed snapshots for each of the data users can be generated by
running a conventional data perturbation technique for each data user with the
privacy parameters corresponding to the privilege level of the user. While this
straight-forward approach achieves the multi-level data disclosure objective, it
can however result in a higher storage cost requiring a replication of the dataset
for each possible privacy level.

In this paper, we propose the concept of reversible data perturbation (Fig-
ure 1(b)) that allows a data publisher to release data at multiple privacy levels
using a single instance of the perturbed dataset. The reversible data perturba-
tion approach consists of an encoding phase and a decoding phase. The dataset
encoding is performed by the dataset owner. During the encoding process, the
perturbed snapshots are first sequentially generated in order from the lowest
privacy level with the least perturbation to the highest privacy level that re-
quires a larger degree of perturbation. Between any two adjacent snapshots in
the sequence, a perturbation key is used to pseudo-randomly generate the se-
quence of perturbation operations that transform the given snapshot into the
next snapshot in the sequence.

In Figure 1(b), we find that the data owner performs the encoding process
to obtain the heavily perturbed dataset along with the two perturbation keys,

key1 and key2, used in the process. After the encoding process, only the two
keys need to be shared by the data owner and the heavily perturbed dataset is
published to all users, namely users A, B and C. Later, when the data needs to
be accessed at a privilege level, the data owner shares the relevant perturbation
keys with the data user. In the example shown in Figure 1(b), the data owner
shares key2 with data user B and key1 and key2 with data user C. Data user
B can use key2 to remove the noise and perturbation pseudo-randomly injected
during the encoding process. Similarly, using key1 and key2, data user C can de-
perturb the dataset further to obtain the minimally perturbed snapshot. Thus,
in the reversible data perturbation approach, the data owner only creates one
perturbed version of the dataset and uses perturbation keys that significantly
reduce the storage cost associated with multi-level data sharing.

2.2 Bipartite Association Graphs

We use bipartite association graph datasets as the candidate data in the proposed
reversible perturbation techniques. Several private data in real world arise in the
form of associations between entities such as the drugs purchased by patients
in a pharmacy store or the movies rated by viewers in a movie rating database
or the products purchased by buyers in an online shopping website [4, 10, 11].
Such associations are best captured as bipartite association graphs with nodes
representing the entities (e.g., drugs and patients) and the edges correspond to
the associations between them (e.g., Patient Bob purchased the Insulin drug).
A bipartite graph can be represented as BG = (V,W,E), which consists of
m = |V | nodes of a first type, n = |W | of a second type and a set of edges
E ⊆ V ×W . Thus, a bipartite graph can represent a set of two-node pairings,
where a two-node pairing (a, b) represents an edge between node a ∈ V and node
b ∈W .

2.3 Differential privacy

Next, we define the notion of Differential privacy that we use in the reversible
data perturbation approach. Differential privacy [7] is a state-of-the-art pri-
vacy paradigm that makes conservative assumptions about the adversary’s back-
ground knowledge and protects a single individual’s information in a dataset by
considering adjacent datasets which differ only in one record.

Definition 1 (Differential privacy [7]). A randomized algorithm A guaran-
tees ε-differential privacy if for all adjacent data sets D1 and D2 differing by at
most one record, and for all possible results S ⊆ Range(A), Pr[A(D1) = S] ≤
eε × Pr[A(D2) = S]

The conventional (individual) differential privacy protects the inference of a
single individual’s information in a dataset. For example, in a bipartite graph
representing the associations between drugs and patients, such a single individ-
ual’s protection may correspond to the inference of the graph edge representing
a patient (e.g., ‘Alice’) purchasing a drug (e.g.,‘Citalo’). For the purpose of pro-
tecting sensitive information of a group of individuals (e.g., the total number of

Fig. 2: Taxonomy trees
cancer medicines purchased by patients in a specific neighborhood), differential
privacy can be further extended to support group data protection based on the
notion of group differential privacy [19].

Definition 2 (Group differential privacy [19]). A randomized algorithm A
guarantees εg-group differential privacy if for all adjacent data sets D1 and D2

differing by at most one group Gi ∈ G, and for all possible results S ⊆ Range(A),
Pr[A(D1) = S] ≤ eεg × Pr[A(D2) = S]

Group differential privacy protects sensitive aggregate information about
groups of records using higher noise injection and perturbation. When records
of a dataset are grouped into larger groups, the transformed dataset will pro-
vide coarser aggregate information and the privacy offered by group differential
privacy will be stronger. Therefore, by grouping the records of a dataset into
multiple granularity levels, different privacy levels can be offered by implement-
ing group differential privacy at different granularity levels in the dataset. In our
work, we employ both individual and group differential privacy in the proposed
reversible data perturbation process to provide multi-level disclosure of the data
using a single instance of the perturbed dataset.

3 Reversible data perturbation techniques
In this section, we present the details of the reversible data perturbation process
and illustrate the encoding and decoding steps involved in the data perturbation.

3.1 Overview of dataset encoding process

The overall encoding phase in the reversible data perturbation process can be
viewed as a sequence of permutation and noise injection steps. Figure 3 illus-
trates the process with an example bipartite graph dataset where the original
version of the bipartite graph is shown as snapshot S0, which consists of eight left
(patient) nodes denoted by PID, eight right (medicine) nodes denoted by MID
and eleven edges representing which medicine was purchased by which patient.
To protect group differential privacy, the bipartite graph is first partitioned into
multiple levels of subgraphs representing different granularity levels based on the
taxonomy tree shown in Figure 2. If such a taxonomy tree is not available apri-
ori, the dataset corresponding to the bipartite graph can be partitioned through
a sequence of specializations based on granular subgraph generation techniques
such as the one presented in [19]. In the Figure 3 example, at level L2×2, both the
left and right nodes are grouped into groups of two nodes and thus it generates
sixteen subgraphs. At level L4×4, nodes are grouped into groups of four nodes

and therefore it generates four subgraphs. At level L8×8, nodes are grouped into
groups of eight nodes, which results in a single graph. Based on the partitioning,
dataset owners can choose to make a low perturbed snapshot, S1 at L2×2, a
moderately perturbed snapshot, S2 at L4×4 and a heavily perturbed snapshot,
S3 at L8×8.

Fig. 3: Steps to encode a bipartite graph dataset
To generate each perturbed snapshot mentioned above, there is one step of

(node) permutation followed by one step of (edge) perturbation. The purpose of
node permutation is to ensure information generalization. For example, at snap-
shot S0, left nodes P2, P3 and right nodes M7, M3 form a subgraph contained
by L2×2, which has a single edge (P2,M3). Without node permutation, specific
information in S0, such as the edge (P2,M3) that indicates P2 purchased M3,
can be viewed by users who only have privilege to view S1 to learn generalized
information about subgraphs at L2×2. In contrast, by permuting P2, P3 and also
by permuting M7, M3 within their size-two groups, the label M3 is swapped
with M7. Thus, instead of edge (P2,M3), a fake edge (P2,M7) indicating in-
correct specific information is contained in S1, whereas generalized information
about the subgraph (e.g., one patient in Orlando purchased one SSRI medicine)
is still maintained in S1. This process is followed by the edge perturbation pro-
cess which aims to prevent specific information to be inferred from the gener-
alized information in the exposed snapshot. For example, after node shuffling,
the subgraph between P2, P3 and M3, M7 shows generalized information that
one patient in Orlando has purchased an SSRI medicine. It has four possibili-
ties, namely (P2,M3), (P2,M7), (P3,M3) and (P3,M7). An adversary with some
background knowledge may infer that (P2,M7), (P3,M3) and (P3,M7) cannot
exist and therefore will be able to conclude the existence of edge (P2,M3) from
the generalized information. To address this concern, edge perturbation can be
used to perturb the edges of each subgraph based on randomized mechanisms
(e.g., Laplace Mechanism [7]). In the example, users receiving S1 can also view
the injected edge (P3,M3) and thus learn that two patients in Orlando purchased
SSRI medicine. Since the noise injection is based on differential privacy, the users
viewing this data cannot tell whether the two edges are true edges or injected
edges and therefore feel uncertain to conclude the existence of (P2,M3). After
the two steps, S1 can be generated, which reveals generalized information about
subgraphs at L2×2 while protecting individual information in S0. Similarly, after
another round of two steps, S2 reveals generalized information of L4×4 while
protecting specific information of L2×2. Similarly, S3 reveals L8×8 information
while protecting information of L4×4. At the end of the encoding phase, if S3 still

contains sensitive information about L8×8 that the data owner is not willing to
share to all possible users, edge permutation can be executed over S3 to permute
all the edges in S3 so that the obtained S4 is safe for disclosure.

To generate snapshot Si from Si−1, a perturbation key is used to first pseudo-
randomly permute the two sides of nodes of each subgraph and then pseudo-
randomly perturb edges within each subgraph. Also, edge permutation at the
last step is pseudo-randomly implemented using a perturbation key. Next, we
will show how to use perturbation keys to perform edge perturbation, node
permutation and edge permutation steps in the reversible perturbation approach
so that legitimate users can use perturbation keys to decode S4 to any previous
snapshots (e.g., S0, S1, S2, S3) containing finer information.

Algorithm 1: Noise injection

Input : Bipartite graph BG = (V,W,E), sensitivity 4f , budget ε, key K.

Output: Perturbed bipartite graph B̃G.
1 n = bLaplaceRandom(0,4f/ε,K)c;
2 Initialize counter c = 0, index i = 0, new edge recorder NE, skipped index

recorder SI;
3 while c < n do
4 ne = (rand(2i,K) mod |V |, rand(2i+ 1,K) mod |W |);
5 if ne /∈ E ∪NE then

6 NE ← ne; c+ +;
7 end
8 else

9 SI ← i;
10 end
11 i++;

12 end

13 B̃G = (V,W,E ∪NE);

Algorithm 2: Noise removal

Input : Perturbed bipartite graph B̃G, sensitivity 4f , budget ε, key K,
skipped index recorder SI.

Output: Bipartite graph BG.
1 n = bLaplaceRandom(0,4f/ε,K)c;
2 Initialize index i = 0;
3 while i < n+ |SI| && i /∈ SI do
4 re = (rand(2i,K) mod |V |, rand(2i+ 1,K) mod |W |);
5 Remove edge re from B̃G;
6 i++;

7 end

8 BG = B̃G;

3.2 Reversible edge perturbation

For each subgraph, the reversible edge perturbation step first uses the perturba-
tion key to pseudo-randomly sample a noise using the Laplace Mechanism [7].
When the sampled noise is positive, the procedures of noise injection and noise

removal are performed as shown in Algorithm 1 and Algorithm 2 respectively.
During noise injection, the number of injected edges is sampled from Laplace
pseudo-random value generator with mean 0, variance 4f/ε and seed K, where
K is the key (line 1). Then, during each loop (line 3-12), two pseudo-random
numbers are used to select one left node and one right node from the subgraph
to form a new edge ne (line 4). If ne is not an existing edge, its selection will be
confirmed (line 5-7); otherwise, this iteration will be skipped to avoid collision
and this skipped index will be recorded into a list that will be attached with the
key to be used during the decoding process later (line 8-10). The algorithm com-
plexity is O(n). After this process, legitimate users can receive the perturbation
key to reversibly remove the injected noise using Algorithm 2. With the same
seed K, same n can be generated (line 1), which can then select and remove the
same sequence of edges with assistance of SI (line 3-7). The complexity of this
algorithm is O(n+ |SI|).

However, when noises are negative, instead of using |SI| to record the skipped
iterations, we need to record all removed edges using the perturbation key.

Algorithm 3: Node permutation: encoding

Input : Bipartite graph BG = (V,W,E), key K.
Output: Permuted bipartite graph BG.

1 R = PseudoRandom(K);
2 for i = 0; i < |V |; i+ + do
3 Swap node V [i] and node V [R[i] mod |V |];
4 end
5 for i = |V |; i < |V |+ |W |; i+ + do
6 Swap node W [i− |V |] and node W [R[i] mod |W |];
7 end

Algorithm 4: Node permutation: decoding

Input : Permuted bipartite graph BG = (V,W,E), key K.
Output: Bipartite graph BG.

1 R = PseudoRandom(K);
2 for i = |V | − 1; i ≥ 0; i−− do
3 Swap node V [i] and node V [R[i] mod |V |];
4 end
5 for i = |V |+ |W | − 1; i ≥ |V |; i−− do
6 Swap node W [i− |V |] and node W [R[i] mod |W |];
7 end

3.3 Reversible node permutation

For each subgraph, the reversible node permutation step uses the perturbation
key to pseudo-randomly shuffle node labels (e.g., PID, MID) during the encoding
phase and later uses the same key to recover their order during the decoding
process. We show its procedures in the encoding phase and decoding phase in
Algorithm 3 and Algorithm 4 respectively.

During the encoding phase, the perturbation key is used as a seed in the
pseudo-random stream generator to generate a sequence of pseudo-random num-
bers denoted as R (line 1). Then, the first |V | pseudo-random numbers in R are

used to shuffle the left nodes in BG (line 2-4) while the pseudo-random numbers
generated later, namely |W | are used to shuffle the right nodes (line 5-7). Each
pseudo-random number swaps two left (right) nodes. The first node is selected
from top to bottom along with its position while the second node is pseudo-
randomly selected by the pseudo-random number using modular arithmetic. At
the end of Algorithm 3, both left nodes and right nodes are shuffled in a re-
versible manner. Later, during decoding phase, given the same key, the same R
can be obtained (line 1). The same two groups of pseudo-random numbers in R
are used to recover left nodes (line 2-4) and right nodes (line 5-7) respectively.
The process within each loop is quite similar to that of the encoding process.
However, instead of starting from top to bottom, during decoding process, the
loops start from bottom to top with a reverse order so that operations imple-
mented during encoding can be reversibly implemented during decoding, which
results in the recovery of the original subgraph. Here, both the algorithms have
a complexity of O(|V |+ |W |).

In Figure 4, the labels of the nodes are permuted through reversible node
permutation while the edges are permuted through reversible edge permuta-
tion (to be discussed later). In the example, Alice uses a perturbation key as
a seed to the pseudo-random stream generator to get a sequence of pseudo-
random numbers R. Then, the first six pseudo-random numbers (assumed to
be [35, 18, 46, 12, 27, 57]) and second six pseudo-random numbers (assumed to
be [7, 18, 24, 29, 62, 67]) in R are used to shuffle the left and right nodes of the
bipartite graph respectively. Based on Algorithm 3, the first pseudo-random
number R1 = 35 swaps P2 and P3, followed by 18 swapping P3 and P6, 46 swap-
ping P4 and P5, 12 swapping P6 and P5, 27 swapping P4 and P6, 57 swapping
P2 and P4. As a result, left nodes in the left bipartite graph are permuted to the
order in the right bipartite graph. Then, in Figure 5, Bob gets the permutation
key from Alice and uses the key as a seed and generates the same R as gener-
ated by Alice. Among the first six pseudo-random numbers [35, 18, 46, 12, 27, 57],
R6 = 57 is first picked to swap P2 and P4, followed by 27 swapping P4 and P6,
12 to swapping P6 and P5 and so on. Therefore, the original order of the left
nodes can be recovered.

Fig. 4: Encoding Fig. 5: Decoding

3.4 Reversible edge permutation

Edge permutation is implemented as the last step in the encoding phase and
therefore it represents the first step during the decoding phase. The edges of
the bipartite graph are represented using an adjacency matrix. For example, the

adjacency matrix of the left bipartite graph in Figure 4 is shown as the matrix E
below, where the first row represents that P2 is linked with M1. Here, the edges
can be shuffled by simply permuting the adjacency matrix.

E =

0 1 0 0 0 0
1 0 0 1 0 0
0 0 1 0 0 1
0 0 0 0 1 0
0 1 0 1 0 0
0 0 0 1 0 0

 E =

1 0 0 0 0 1
0 0 0 1 0 0
0 1 0 0 1 0
1 0 0 0 0 0
0 0 0 0 0 1
1 0 1 0 0 0

The encoding and decoding parts of the process are shown in Algorithm 5 and

Algorithm 6 respectively. Similar to node permutation, in both the algorithms,
same R can be obtained through the perturbation key (line 1). Then, we use
the first |V ||W | pseudo-random numbers in R to perform |V ||W | rounds of swap
operation (line 2-4). Each time, the first edge is selected based on a fixed order
(top to bottom and left to right in Algorithm 5, right to left and bottom to top
in Algorithm 6) and the second edge is pseudo-randomly selected by the pseudo-
random number using modular arithmetic. In this way, by reversibly performing
the swap operation during the decoding phase, the original order of the edges
can be recovered. Here, the algorithms have a complexity of O(|V ||W |).

Algorithm 5: Edge permutation: encoding

Input : Bipartite graph BG = (V,W,E[|V |][|W |]), key K.
Output: Permuted bipartite graph BG.

1 R = PseudoRandom(K);
2 for i = 0; i < |V ||W |; i+ + do
3 Swap edge E[b i

|W |c][i mod |W |] and edge

E[bR[i] mod |V ||W |
|W | c][R[i] mod |V ||W |) mod |W |];

4 end

Algorithm 6: Edge permutation: decoding

Input : Permuted bipartite graph BG = (V,W,E[|V |][|W |]), key K.
Output: Bipartite graph BG.

1 R = PseudoRandom(K);
2 for i = |V ||W | − 1; i ≥ 0; i−− do
3 Swap edge E[b i

|W |c][i mod |W |] and edge

E[bR[i] mod |V ||W |
|W | c][R[i] mod |V ||W |) mod |W |];

4 end

In Figure 4, if the first and second pseudo-random numbers generated by
a key are 53 and 71, we first use 53 to swap E[b 06c][0 mod 6] = E[0][0] and

E[b 53 mod 36
6 c][(53mod 36)mod 6] = E[2][5]. Then, we use 71 to swap E[0][1] and

E[5][5]. By repeating this for all the 36 pseudo-random numbers, the adjacency
matrix can be transformed as E to represent the right bipartite graph in Figure 4.

4 Experimental Evaluation

In this section, we present the experimental study on the performance of the
proposed reversible data perturbation techniques. We first briefly describe the
experimental setup.

4.1 Experimental setup

Our experiment setup was implemented in Java with an Intel Core i7 2.70GHz
16GB RAM PC. The bipartite graph dataset used in this work is the MovieLens
dataset [10] which consists of 6,040 users (left nodes), 3,706 movies (right nodes)
and 1,000,209 edges describing rating of movies made by users.

4.2 Experimental results

The experimental results are organized into three parts. First, we evaluate the
performance efficiency of the three key components of the reversible perturba-
tion process separately, namely edge perturbation, node permutation and edge
permutation. Then, we integrate the three components and evaluate the perfor-
mance of the complete reversible data perturbation process. In our experiments,
we generate three granularity levels and evaluate the time and space consump-
tion for each granularity level during encoding and decoding phases. Finally, we
evaluate the utility and privacy protection offered by the data perturbation pro-
cess. We demonstrate that the noise injected for protecting differential privacy
does not substantially reduce the utility of the data.

 0

 5

 10

 15

 20

 25

 30

 35

1 10 100 1000

m
s
e

c

dataset size (/1000 edges)

encode
decode

(a) edge perturbation

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 10 100 1000

s
e

c

dataset size (/1000 edges)

encode
decode

(b) node permutation

 0

 5

 10

 15

 20

 25

200 600 1000

s
e

c

dataset size (/1000 edges)

encode
decode

(c) edge permutation

Fig. 6: Algorithm performance

Algorithm performance The first set of experiments evaluates the perfor-
mance efficiency of edge perturbation, node permutation and edge permutation
separately. We evaluate the scalability of these algorithms by varying the size
of dataset and we measure the time taken for their execution both in encoding
and decoding phases. In Figure 6(a), edge perturbation is evaluated. The dataset
size is changed from one thousand edges to one million edges. Specifically, the
one-million-edge dataset represents the entire MovieLens dataset. The results
show that both noise injection (encode) and removal (decode) processes have
significantly low time consumption cost and demonstrate high scalability. Even
when the dataset size increases 1000 times, the time consumption increases only
by a factor of 2. For a dataset with one million edges, the noise injection and
removal processes cost only about 35ms and 10ms respectively. Here, compared
with noise injection, the noise removal process usually has a lower time con-
sumption. This is because the process of noise removal employs some meta data

information attached to the perturbed dataset which significantly accelerates its
speed of execution. Next, in Figure 6(b), we evaluate the node permutation pro-
cess with the same experiment setting. Unlike edge perturbation, although the
time consumption of node permutation is significantly small for small datasets,
it becomes acceptably larger for the one-million-edge dataset, which is about
14s. Finally, in Figure 6(c), we measure the time taken by the edge permutation
process using dataset sizes that vary from 0.2 million edges to 1 million edges.
The results show that the time taken by the process for the one-million-edge
dataset is about 23s, which is quite acceptable as the edge shuffling process is
only required to be run once during the entire process.

 0

 5

 10

 15

 20

 25

200 600 1000

s
e

c

dataset size (/1000 edges)

L3-encode
L3-decode
L2-encode
L2-decode
L1-encode
L1-decode

(a) time consumption w/
varying size

 0

 10

 20

 30

 40

 50

 60

 70

 80

4 16 64

s
e

c

number of groups at L2

L3-encode
L3-decode
L2-encode
L2-decode
L1-encode
L1-decode

(b) time consumption w/
varying partitioning

 5

 10

 15

 20

 25

 30

 35

 40

1 2 3 4 5

m
e

g
a

b
y
te

s

no. of snapshots

conventional
reversible

(c) comparison of storage
cost

Fig. 7: Multi-level performance

Multi-level performance The second set of experiments evaluate the perfor-
mance of the multiple levels of perturbation during the process. In this part, we
processed the dataset to generate three granularity levels of subgraphs, denoted
as L1, L2 and L3 respectively. We applied the partitioning algorithm proposed
in [19] to generate the granularity levels. The algorithm runs several rounds of
specializations and each specialization can partition a bipartite graph into four
non-overlapping subgraphs. Therefore, after n rounds of specializations, the orig-
inal bipartite graph has been partitioned to 4n non-overlapped subgraphs. In this
experiment, we use the MovieLens dataset and we consider the entire graph as
level L1, the 16 (42) subgraphs generated by two specializations as level L2 and
the 256 (44) subgraphs generated by four specializations as level L3. For ease
of understanding, L1, L2 and L3 can be considered to roughly correspond with
L8×8, L4×4 and L2×2 in the example of Figure 3. In Figure 7(a), we evaluate the
encoding and decoding time for each granularity level when the dataset size is
varied from 0.2 million edges to 1 million edges. As can be seen, as the dataset
size increases, the time taken by all the three granularity levels also show a rea-
sonable increase. Level L3 needs to run edge perturbation and node permutation
over the 256 subgraphs. Due to the very small subgraph size and the low sensi-
tivity for protecting differential privacy for individual edges, L3 has the lowest
time consumption. At level L2, although the number of subgraphs reduces to 16,
the corresponding increase in subgraph size makes its time consumption higher
than that of L3 for large dataset size. Finally, the time consumption of level L1

is dominated by edge permutation, which follows the same trend as shown in
Figure 6(c). In Figure 7(b), we fix the dataset size as one million edges while
changing the number of subgraphs at level L2 from 16 to 4 and 64. This change

at L2, as shown in Figure 7(b), has no influence on the results of L3. The reduc-
tion from 16 to 4 makes an increase for both L2 and L1 while the increase from
16 to 64 makes results at L2 significantly increased and results at L1 obviously
decreased. These results show that instead of the average size of subgraphs, the
time consumptions of granularity levels are much more sensitive to the amount of
the injected noises. Finally, in Figure 7(c), we compare the storage cost required
by conventional framework and reversible framework. Based on Figure 3, three
granularity levels can generate at most five snapshots. As can be seen, using the
conventional framework, the storage cost is linearly increased with the number
of generated snapshots as data owner needs to store all of them. However, the
proposed reversible framework efficiently employs the use of perturbation keys to
allow all snapshots to be recovered from a single published snapshot protected
with the highest privacy level. Thus, the data owner only needs to store one
snapshot. The size of the perturbation keys and the stored metadata for noise
injection have little influence on the overall storage cost.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
E

R

ε

L3
L2
L1

(a) noise error (256 groups)

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
E

R

ε

L3
L2
L1

(b) noise error (16 groups)

 0

 200

 400

 600

 800

 1000

 1200

 1400

5 10 15 20 25 30 35 40 45

n
u

m
b

e
r

o
f

m
o

v
ie

s
number of users

original graph
permuted graph

(c) edge shuffling

Fig. 8: Utility and security
Utility and security In the final set of experiments, we evaluate the utility
and privacy offered by the reversible multi-level data perturbation scheme. In the
edge perturbation process, a large quantity of noise may have an impact on the
utility of published dataset. To evaluate the data utility, we measured the relative
error rate (RER) that represents the ratio of the sum of the error caused by the
noise in each subgraph of a given level and the overall number of edges in the
original bipartite graph. In Figure 8(a), we measure RER of the three granularity
levels when L2 and L3 have 16 and 256 subgraphs respectively. As can be seen,
when the privacy budget ε is 1, RER of all the three levels is very small. Even
if ε is decreased to a very strict value 0.1, the highest RER 0.017 appears at L1,
which is still acceptable. In Figure 8(b), we reduce number of subgraphs at L2

and L3 to 4 and 16 respectively. The results show that this reduction makes RER
of all the three levels lower. Finally, in Figure 8(c), we evaluate the effectiveness
of the edge permutation process by measuring the distribution of the degree of
nodes before and after edge permutation. As can be seen, the distribution in the
perturbed graph after edge permutation is substantially different than that of
the original graph. This makes it harder to infer useful or true information after
the edge permutation process.

5 Related Work

The problem of information disclosure has been studied extensively in the frame-
work of statistical databases. Samarati and Sweeney [21, 22] introduced the k-

anonymity approach which has led to some new techniques and definitions such
as l-diversity [17] and t-closeness [16]. There had been some work on anonymiz-
ing graph datasets with the goal of publishing statistical information without
revealing information of individual records. Backstrom et al. [2] show that in
fully censored graphs where identifiers are removed, a large enough known sub-
graph can be located in the overall graph with high probability. The safe grouping
techniques proposed in [5] consider the scenario of retaining graph structure but
aim at protecting privacy when labeled graphs are released. But, as mentioned
earlier, these existing schemes have been focused on publishing a single instance
of the perturbed dataset with a fixed privacy level without considering the re-
quirements of multiple access levels. The key focus of this work is on developing
a reversible data perturbation approach for bipartite association graph data that
can facilitate the release of multiple levels of information using a single instance
of the perturbed data, similar to the reversible location perturbation techniques
recently proposed in [14, 15].

Based on the concept of differential privacy [7], there had been many works
focused on publishing sensitive datasets through differential privacy constraints
[6, 9, 12, 20, 23]. Recent work had focused on publishing graph datasets through
differential privacy constraints so that the published graph maintains as many
structural properties as possible while providing the required privacy [20]. How-
ever, these existing schemes do not support multi-level access to the published
dataset. The notion of group differential privacy and granular subgraph gen-
eration algorithms for bipartite graphs is recently introduced in [18, 19]. This
paper extends the work presented in [18, 19] with a suite of reversible data per-
turbation techniques that provides a more scalable and cost-effective solution
to releasing bipartite association graph data at multiple privacy levels using a
single instance of the perturbed dataset.

6 Conclusion

Privacy-preserving data publishing techniques are critical for protecting sensitive
information in published datasets. Existing solutions have focused on publishing
a single snapshot of the perturbed dataset that offers a fixed privacy level with
the assumption that all users of the data share the same privilege level to access
it. In cases when data users have different levels of access on the published
data, such schemes will require multiple snapshots corresponding to different
privacy levels to be published and maintained, resulting in higher storage cost
for the data. In this paper, we develop a set of reversible data perturbation
techniques for large bipartite association graphs that use perturbation keys to
control the sequential generation of multiple snapshots of the perturbed data to
offer multi-level access to the data based on privacy levels. To support multi-
level privacy, the proposed techniques require only a single snapshot of the data
to be maintained which significantly reduces the storage cost. We evaluate the
proposed reversible data perturbation techniques through experiments on a real
large bipartite association graph dataset. The experiments demonstrate that
the proposed techniques are scalable, effective and efficiently support multi-level
data access using a single snapshot of the perturbed data.

Reference

1. Bigdata and future of privacy. https://epic.org/privacy/big-data/.
2. Lars Backstrom et al. Wherefore art thou r3579x?: anonymized social networks,

hidden patterns, and structural steganography. In WWW, pages 181–190, 2007.
3. Michael Batty. Big data, smart cities and city planning. Dialogues in Human

Geography, 3(3):274–279, 2013.
4. O. Celma. Music Recommendation and Discovery in the Long Tail. Springer, 2010.
5. Graham Cormode et al. Anonymizing bipartite graph data using safe groupings.

Proceedings of the VLDB Endowment, 1(1):833–844, 2008.
6. Wei-Yen Day, Ninghui Li, and Min Lyu. Publishing graph degree distribution with

node differential privacy. In ICMD, pages 123–138. ACM, 2016.
7. Cynthia Dwork et al. Calibrating noise to sensitivity in private data analysis. In

TCC, volume 3876, pages 265–284. Springer, 2006.
8. Wei Fan and Albert Bifet. Mining big data: current status, and forecast to the

future. ACM SIGKDD Explorations Newsletter, 14(2):1–5, 2013.
9. Arik Friedman and Assaf Schuster. Data mining with differential privacy. In

SIGKDD, pages 493–502. ACM, 2010.
10. F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and

context. ACM TIIS, 5(4):19, 2016.
11. Ruining He et al. Ups and downs: Modeling the visual evolution of fashion trends

with one-class collaborative filtering. In WWW, pages 507–517, 2016.
12. Vishesh Karwa et al. Private analysis of graph structure. Proceedings of the VLDB

Endowment, 4(11):1146–1157, 2011.
13. Shiva Prasad Kasiviswanathan et al. Analyzing graphs with node differential pri-

vacy. In Theory of Cryptography, pages 457–476. Springer, 2013.
14. Chao Li and Balaji Palanisamy. De-anonymizable location cloaking for privacy-

controlled mobile systems. In NSS, pages 449–458. Springer, 2015.
15. Chao Li and Balaji Palanisamy. Reversecloak: Protecting multi-level location pri-

vacy over road networks. In ACM CIKM, pages 673–682. ACM, 2015.
16. Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. t-closeness: Privacy

beyond k-anonymity and l-diversity. In ICDE, pages 106–115. IEEE, 2007.
17. Ashwin Machanavajjhala et al. l-diversity: Privacy beyond k-anonymity. In ICDE,

pages 24–24. IEEE, 2006.
18. Balaji Palanisamy, Chao Li, and Prashant Krishnamurthy. Group differential

privacy-preserving disclosure of multi-level association graphs. In ICDCS, pages
2587–2588. IEEE, 2017.

19. Balaji Palanisamy, Chao Li, and Prashant Krishnamurthy. Group privacy-aware
disclosure of association graph data. IEEE Big Data, 2017.

20. Alessandra Sala et al. Sharing graphs using differentially private graph models. In
SIGCOMM, pages 81–98. ACM, 2011.

21. Pierangela Samarati. Protecting respondents identities in microdata release. IEEE
transactions on Knowledge and Data Engineering, 13(6):1010–1027, 2001.

22. Latanya Sweeney. k-anonymity: A model for protecting privacy. International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(05):557–570,
2002.

23. Qian Wang et al. Rescuedp: Real-time spatio-temporal crowd-sourced data pub-
lishing with differential privacy. In INFOCOM, pages 1–9. IEEE, 2016.

24. Xindong Wu et al. Data mining with big data. IEEE transactions on knowledge
and data engineering, 26(1):97–107, 2014.

