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ABSTRACT
With advances in sensing and positioning technology, fueled
by the ubiquitous deployment of wireless networks, location-
aware computing has become a fundamental model for of-
fering a wide range of life enhancing services. However, the
ability to locate users and mobile objects opens doors for
new threats - the intrusion of location privacy. Location
anonymization refers to the process of perturbing the exact
location of users as a cloaking region such that a user’s lo-
cation becomes indistinguishable from the location of a set
of other users. A fundamental limitation of existing loca-
tion anonymization techniques is that location information
once perturbed to provide a certain anonymity level cannot
be reversed to reduce anonymity or the degree of perturba-
tion. This is especially a serious limiting factor in multi-level
privacy-controlled scenarios where different users of the lo-
cation information have different levels of access. This pa-
per presents ReverseCloak, a new class of reversible location
cloaking mechanisms that effectively support multi-level lo-
cation privacy, allowing selective de-anonymization of the
cloaking region to reduce the granularity of the perturbed
location when suitable access credentials are provided. We
evaluate the ReverseCloak techniques through extensive ex-
periments on realistic road network traces generated by GT-
MobiSim. Our experiments show that the proposed tech-
niques are efficient, scalable and provide the required level
of privacy.

Categories and Subject Descriptors
H.2.7 [Database Management]: Database Administra-
tion—Security, integrity, and protection; H.2.8 [Database
Management]: Database Applications—Spatial databases
and GIS

General Terms
Algorithms, Design.
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1. INTRODUCTION
The proliferation of low-cost GPS-enabled mobile devices

and the ubiquitous deployment of wireless networks drive
the rapid emergence of mobile technology to satisfy the grow-
ing demands for location-based service applications. Exam-
ples of location-based applications include searching nearest
points of interest (“where is the nearest gas station to my
current location?”), spatial alerts (“Remind me when I drive
close to the grocery store.”), location-based social networking
(“Tell my friends where I am.”). The market of location-
based systems is predicted to be $3.3 billion in 2013 [23]
and is expected to grow further to sustain the growth in
LBS and mobile applications markets [18]. While location-
based services find numerous potential benefits, they also
open new doors for privacy threats. For example, through
statistical analysis of usual haunts of the users, an attacker
can speculate about user’s private information, such as hob-
bies, living habits, health status and so on. In the worst
cases, disclosure of location information can be even life-
threatening [25]. Such privacy threats directly affect peo-
ple’s attitude towards location-based applications as people
become more conscious and aware of the potential privacy
risks associated with it [16].

Location privacy is a system-level capability of location-
based systems, which controls the access to location informa-
tion at different spatial and temporal granularity instead of
completely stopping access. Location anonymization refers
to the process of perturbing user location information such
that it masks the exact location of the user using a cloaked
region. A subject is said to be location k-anonymous if her
location information is indistinguishable from that of k − 1
other users . However, a fundamental limitation of all ex-
isting location privacy protection schemes is that location
information once perturbed to provide a certain anonymity
level cannot be reversed to reduce anonymity or the degree
of perturbation. This is especially a serious limiting fac-
tor in multi-level privacy controlled scenarios where differ-
ent users of the location information have different levels of
access on the exposed location. For instance if Alice is con-
cerned of her location privacy, she might decide to expose
her location with a certain privacy level with one location-
based service provider. However, she may wish to give some
other location-based service providers access to a reduced
anonymity level as she may trust those providers more than



the others. Also, Alice may want to give access to her ex-
act location to some providers who are most trustworthy.
In existing schemes, location information once lost during
perturbation cannot be restored and therefore, becomes un-
available when more privileged users try to access finer in-
formation, resulting in a loss of utility.

There are several location anonymization techniques [3,
10, 11, 14, 19, 28] proposed in the literature to tackle the
location privacy problem. Most of these techniques are de-
veloped as unidirectional location perturbation schemes that
can only perturb in an irreversible manner without being
able to de-anonymize when users with higher privilege have
access to more fine granular information. This paper presents
ReverseCloak, a new class of reversible location cloaking
mechanisms that allows selective de-anonymization of the
cloaking area when suitable access credentials are provided.
A key objective of our work is to support multilevel location
privacy requirements that allow different users to infer dif-
ferent levels of information from the same exposed location
based on their access credentials and the access privilege
levels entitled to them. Our proposed approaches transform
the raw point location of a user into a cloaked location region
such that finer location information can be obtained through
careful de-anonymization using a shared secret anonymiza-
tion key. However, without the secret key, the cloaked region
preserves strong privacy properties, allowing no additional
information to be inferred. To the best of our knowledge, the
techniques proposed in this paper are the first set of location
privacy protection schemes aimed at supporting multi-level
privacy/utility controls through novel development of secure
reversible location cloaking techniques.

The rest of the paper is organized as follows: Section 2
provides a background and an overview of the multi-level
reversible location anonymization problem. In Section 3,
we discuss two reversible multi-level location anonymization
schemes namely reversible global expansion and reversible
pre-assignment-based local expansion techniques that sup-
port multi-level location privacy. In Section 4, we present
the analysis of our experiments on realistic road network
traces generated using GTMobiSim. We discuss related work
in Section 5 and we conclude in Section 6.

2. CONCEPTS AND MODELS
In this section, we first describe the road network model

used to capture the mobility features of mobile users and
then introduce the concept of location cloaking. After that,
we define the multilevel reversible location privacy problem
and discuss two effective attack models used to evaluate the
attack resilience of the proposed solutions.

2.1 Road network model
We model the road network as a graph G = (VG, EG),

where VG represents the set of junctions and EG represents
the set of road segments. An example is shown in Figure
1, which consists of 23 junctions and 33 road segments. A
junction is defined as the crossover point of any two roads
or the end of a road. A road segment is defined as the
direct road connecting any two adjacent junctions. Each
segment is uniquely determined by the two junctions asso-
ciated with it while each junction is associated with one
or more adjacent road segments. The number of segments
adjacent to a road junction, ji defines the degree of the
junction, denoted by d(ji). Based on that, each junction

Figure 1: Road network model

can be classified into three categories namely an intersec-
tion junction (d > 3), an intermediate junction (d = 2) and
an end junction (d = 1). In the road network, each mobile
user is assumed to move along the segments and change di-
rection only at junctions. A user interested in sharing her
anonymized location information forwards her true location
with the anonymization requirements and spatial informa-
tion to a trusted anonymization which then transforms this
raw point location into a perturbed spatial region that meets
the required privacy levels.

2.2 Location anonymization
We consider the key privacy requirement arising in a road

network namely location k-anonymity, which ensures that
the exposed location of a user is indistinguishable from a set
of other users on the road network.

Definition 1 (Location k-anonymity). The location in-
formation of a user is said to be k-anonymous if the location
information is indistinguishable from the location informa-
tion of at least k-1 other users.

In a personalized location privacy model, for each location
anonymization request, the level of k-anonymity is decided
by the user in a customizable manner. Also, in order to
bound the size of the cloaking region that has a direct influ-
ence on the performance of the anonymous query processing
technique [19, 27], a customizable maximum spatial reso-
lution level, denoted by σs is specified. These two parame-
ters together define the user-defined privacy profile: (δk, σs).
In the past, several cloaking models have been proposed
for location anonymization. In this paper, we discuss two
broad class of techniques namely (i) random sampling and
(ii) road-network-based expansion as candidate approaches
for location cloaking over road networks.

(a) Random sampling (b) Road network expansion

Figure 2: Two typical anonymizatioin models



Figure 3: Multilevel reversible location anonymization

Random sampling: Given the anonymization request
and the user-defined profile, the random sampling approach
first chooses the road segment containing the actual user. It
then randomly adds segments within the bounded area re-
stricted by σs into the cloaking region until the requirements
of δk is met. In the example shown in Figure 2(a), we find
that the entire region is a part of the road network shown in
Figure 1. It represents the region restricted by the spatial
tolerance level σs. To meet the requirement of δk, in addi-
tion to the segment containing the actual user, the algorithm
randomly adds four additional segments to form the cloaked
region. While the random sampling approach attempts to
ensure higher randomness in the cloaking process, it is how-
ever shown that it is not desirable from an anonymous query
processing perspective as the discrete segments added in the
random sampling process are not amenable for scalable and
efficient query processing [27]. From a query processing per-
spective, a well-connected cloaked region over the network is
more efficient as the query processing complexity is simpli-
fied. This motivates us to the road-network-based expansion
techniques, which are described next.

Road-network-based expansion: In the road-network-
based expansion approach, instead of randomly choosing
segments from the bounded region in a discrete manner, the
segments are chosen continuously based on an expansion
scheme. The expansion begins from the segment containing
the actual user and randomly expands such that each newly
added segment is adjacent to at least one other segment in
the currently formed cloaking region. Figure 2(b) shows an
example of a road-network-based cloaking where the chosen
segments, satisfying δk, form a tightly connected structure
than the one generated by random sampling. Several road
network-based cloaking schemes have been proposed in the
past [27, 29] and they vary in terms of how randomly the
expansion process proceeds to reach the required anonymity
levels.

As it can be noted, most existing work on location privacy
have focused on achieving variations of location k-anonymity
and in such schemes, anonymity level once achieved in the
cloaked region cannot be reduced when users with higher
privileges need to access fine granular information. There-
fore, in multi-level access controlled scenarios, such irre-
versible approaches can protect location privacy at at-most
one privacy/utility level.

2.3 Multilevel reversible location privacy
The focus in this paper is developing a new class of re-

versible cloaking techniques, which can support multi-level
location privacy in access controlled scenarios. In such cases,
the location privacy of users is protected under multiple pri-
vacy levels, with higher anonymity levels for users with lower

Figure 4: Replay attack

privileges and lower privacy levels for users with higher priv-
ileges.

In the multi-level reversible location privacy framework,
a trusted anonymizer obtains the raw location information
from the mobile clients with the user-defined profile. How-
ever, with the multi-level privacy model, the user-defined
profile consists of the privacy requirements for each privacy
level, Li, except L0 referring to a cloaking region with only
the segment of actual user. Accordingly, the user-defined
privacy profile is represented by (δik, σ

i
s), where 1 ≤ i ≤ N−1

and N denotes the number of privacy levels. In addition,
each privacy level, Li is associated with a shared secret key,
Keyi, which is used to drive anonymization process for that
privacy level. Therefore, with access to the anonymization
key of a particular privacy level, users of the cloaked lo-
cation can selectively de-anonymize the cloaked region to
reduce privacy levels to obtain finer location information. A
detailed example of a four level case is shown in Figure 3.
The segment s18 contains the actual user belongs to level,
L0. Using the anonymization key Key1, {s17, s22} are added
to reach the privacy level, δ1k of L1. Then, Key2 is used fur-
ther to extend the cloaking region to meet δ2k of level L2

by adding segments {s14, s15, s19}. Finally, {s9, s21, s24} are
added using the anonymization key, Key3 to reach the high-
est privacy level, L3.

Later, when the cloaked location information needs to be
reduced in privacy levels, it can be done using the anonymiza-
tion keys. For instance, for accessing the information at the
lower privilege level, L2, Key3 can be used to exactly iden-
tify and remove the segments {s9, s21, s24} from the cloaking
region to reduce to the cloaked region corresponding to level,
L2. Similarly, using both Key3 and Key2, the segments
{s9, s21, s24, s14, s15, s19} can be identified and removed from
the cloaking region to reduce to level, L1. Therefore, by
merely managing the shared anonymization keys among the
location users at different privilege levels, the whole process
protects location privacy under multiple discrete levels as
customized in the user-defined privacy profile.

2.4 Replay attack
The security and privacy strength of any location privacy

mechanism comes from the attacker’s inability to infer the
exact user location within the cloaked location. Specifically,
the attacker is interested in analyzing the associativity of
the actual user with each road segment in the cloaked loca-
tion. Therefore, a segment with higher associativity is more
likely to be the segment of the actual user. From the at-
tacker’s perspective, the attack is most ineffective when the
associativity for the segments follows a uniform distribution.
This leads to the highest uncertainty in identifying the true
location of the user. In this paper, we use the replay attack



Figure 5: Forward transition collision

to evaluate the attack-resilience of the proposed cloaking
schemes. Similar to the adversary models in [3, 19, 27], we
primarily focus on snapshot exposure of location information
for supporting snapshot location-based queries. For contin-
uous location-based queries, with the additional ability to
combine and correlate information from the location expo-
sure of multiple snapshot instances, the adversary’s chances
of inferring the true location can be increased [9, 22]. While
addressing such query-correlation attacks is a promising di-
rection of future work, the scope of the replay attack model
considered in our work is limited to snapshot queries.

In the replay attack, each segment within the cloaking
region is iteratively considered to be the segment of the ac-
tual user to compute the associativity for all the segments.
If the number of segments shared by the replayed cloaking
region generated from a segment, si, and the real cloaking
region generated from the real start segment is Ni, which is
1, (s17), in the example of Figure 4. The associativity, Ai of
si, can be calculated as Ai = Ni∑

Ni
. After obtaining Ai for

all the segments within the cloaking region, the uncertainty
of the attacker can be quantified by Entropy [24] measured
as E = −

∑
Ai logAi. The Entropy is a measure of the

amount of information required to break the anonymity pro-
vided by the system. Therefore, the larger is the entropy,
the higher is the uncertainty of the attacker and the scheme
is more attack-resilient.

In the next section, we present our proposed reversible
cloaking mechanisms that support efficient multi-level loca-
tion privacy over road networks.

3. REVERSIBLE LOCATION CLOAKING
In this section, we present the proposed ReverseCloak

cloaking mechanisms that support efficient multi-level loca-
tion privacy over road networks. Before we present the de-
tails of the proposed approach, we discuss why conventional
location cloaking techniques that perform road network-based
expansion are not amenable for reversibility. We then dis-
cuss the key ideas behind the proposed reversible cloaking
approach and discuss the challenges and the solution tech-
niques for achieving reversible location cloaking over road
networks.

In road network-based location cloaking schemes, a road
segment is considered as the basic unit of expansion. At
any point in the expansion process, the set of road segments
selected to be part of the cloaking region forms the cloaking
set. Therefore, in the beginning of the expansion process,
the cloaking set contains only the segment containing the ac-
tual user. As the expansion process proceeds, the segments
are added to the cloaking set until the required privacy levels
are met. In the de-anonymization process, upon providing

Figure 6: Backward transition collision

the anonymization key, the segments in the cloaking set are
removed in the reverse order to reduce the anonymity level.
At the end of the process, the segment containing the actual
user is obtained.

The conventional road-network-based expansion cloaking
mechanisms are designed to expand either randomly or semi-
randomly based on additional factors such as network dis-
tance and the number of users present in the added seg-
ment. For example, in Figure 5, we find that the actual
user who sends query is located in segment s18 and together
with the second chosen segment s14 form the current cloak-
ing region. At this phase of the cloaking process, the five
segments, denoted with dotted lines are the candidates of
the next segment to be added to the cloaking region. Since
these segments are adjacent to at least one segment within
the current cloaking region, these five segments form the
candidate set.

For conventional expansion-based cloaking algorithms, the
newly added segment within the candidate set may be se-
lected either randomly or semi-randomly based on addi-
tional factors. However, in both the cases, we note that
it is impossible for the privileged users to de-anonymize it
as the cloaking region inherently protects against such de-
anonymization attempts by the adversary due to the ran-
domness. In order to support effective multi-level privacy
protection, an ideal situation is when the cloaked region pro-
vides the highest uncertainty to an attacker attempting to
de-anonymize it but has no uncertainty to users who possess
the privileges to de-anonymize it. We achieve this property
by devising our road network-based expansion process to
be driven through an anonymization key to handle the ran-
domness. In our approach, the cloaking process expands in
a pseudo-random fashion by adding road segments into the
cloaking region until the privacy requirements are met.

We refer to each addition of a new segment in anonymiza-
tion process as a forward transition from a segment within
the current cloaking set to a segment in the current can-
didate set. Similarly, during the de-anonymization process,
the removal of each segment in the cloaked region represents
a backward transition, which is essentially an inversion of
the forward transition in the anonymization process. In this
way, the relationships between any two successively selected
segments are established. Therefore, the anonymization and
de-anonymization can be considered as a series of forward
and backward transitions respectively. For two segments si
and sj , the forward transition from si to sj is denoted by
ft{si → sj} and the backward transition from sj to si is
denoted by bt{sj → si}. They together form a transition
pair. To reverse the anonymization process, the goal is to
make the transition chain reversible so that the forward and
backward transitions in pair are correlated one by one. In



the proposed approach, we use a secret key to generate the
transition chain in a pseudo-random manner. Specifically,
the anonymization process generates a stream of pseudo-
random numbers using the anonymization key as the seed
value. In each expansion step, the candidate set contains a
certain number of candidate segments and each of them cor-
responds to a candidate forward transition pointing to them
from the segment selected in the last expansion step. Then,
each of them is assigned a unique transition value to be
used for this step. Among these possible candidate forward
transitions, the algorithm pseudo-randomly picks a unique
transition based on a pick value, determined by the pseudo-
random integer and the size of the candidate set. This pick
value enables to choose a unique candidate forward transi-
tion based on the transition value. In the example shown
in Figure 5, the candidate expansion region contains 5 seg-
ments and the transition values 0 to 4 are assigned to the
five possible transitions. Here the pick value is generated as
Rimod 5, where Ri is the ith pseudo-random number in the
stream. The pick value uniquely selects the transition with
a matched transition value.

In contrast, in the de-anonymization process, uniquely
identifying the exact backward transition is more challeng-
ing. Even though the pick value of every step can be calcu-
lated using the secret key in the de-anonymization process,
the assignment of transition values for forward and back-
ward transitions should be done very carefully. Otherwise
collision of transition values may occur for either forward
transitions (Figure 5) or backward transitions (Figure 6),
which may result in incorrect selection of backward transi-
tions. In the example shown in Figure 5, we find that when
s17 is removed in the de-anonymization process, the tran-
sition values from the segments within the cloaking region
to segment, s17 should be checked. If the pick value here is
4, for instance, we find that the transition corresponding to
ft{s14 → s17} matches the pick value, 4. While this indi-
cates that s14 is a potential previous segment, we notice that
a collision may happen if another transition such as value
of ft{s18 → s17} also has a transition value matching the
pick value, 4, in this case. Therefore, the de-anonymization
can no longer uniquely identify the backward transitions and
de-anonymize the cloaked location.

In general, there are two ways to handle collisions in a
reversible cloaking scheme. A simple and straight-forward
approach is to simply record information about the colli-
sions as additional metadata which can then be used to aid
the de-anonymization process to enable skipping the corre-
sponding colliding transitions [17]. However, from a location
cloaking mechanism design standpoint, it is more desirable
to have a collision-free anonymization approach that guaran-
tees that the de-anonymization process is collision-free. Such
a scheme can operate without any additional metadata. In
this paper, we devise collision-free reversible cloaking mech-
anisms based on two different approaches. In the first ap-
proach, collisions are prevented by carefully assigning the
transition values to the forward transitions ft{si → sj} in a
dynamic on-the-fly manner during anonymization. We pro-
pose the reversible dynamic global expansion scheme based
on this (Section 3.1). In the second approach, both the
backward and forward transitions are assigned transition
values and we ensure that all backward and forward tran-
sition values are unique. In the example shown in Figure
6, the backward transitions are also assigned unique transi-

tion values. Since the pick values for a transition pair are
same, we need to ensure that their transition values are also
the same. Therefore, for instance if the pick value is 4 and
if the transition value of bt{s17 → s14} is also 4, then de-
anonymization can proceed successfully without collision as
only s14 matches the backward transition value uniquely.
However, since 4 is uniquely assigned among the backward
transitions from s17 and the transition values for a transition
pair are same, we note here the same transition value, 4 in
this example, cannot be assigned to any other forward tran-
sitions to s17 or backward transitions from s17 (denoted by
the dotted arrow lines). Therefore, to determine the transi-
tion value for a certain transition, the restrictions from other
transitions need be carefully taken into account. We also
note that this assignment of unique forward and backward
transitions can be done apriori for the entire road network
in a statically pre-assigned manner. We develop reversible
pre-assigned local expansion scheme (Section 3.2) based on
this approach.

3.1 Reversible global expansion
The goal of the reversible global expansion cloaking mech-

anism is to perturb the raw point location of the actual
user into a cloaked location region on the road network in
a reversible manner such that the key privacy requirement
namely location k-anonymity is met. The cloaking algo-
rithm starts from the segment containing the actual user.
For each transition, a transition matrix, containing tran-
sition values for all possible transitions between the cur-
rent cloaking region and the candidate expansion region are
generated. These transition values are carefully assigned to
make sure that there are no repeated values in each row and
column so that no collisions occur during de-anonymization.
For each forward transition in the anonymization process, a
pick value generated by the pseudo-random number uniquely
determines the forward transition.. During de-anonymization,
the same pick value can be used to find the forward transi-
tion uniquely.

Next, we introduce the mechanism to assign the transition
values in a collision-free manner using the notion of n-hop
neighboring segment on a road network.

Definition 2 (n-hop neighboring segment). Two seg-
ments on a road network are n-hop neighboring segments of
each other if there is a path between them on the road net-
work passing through n junctions. Therefore, their topologi-
cal distance on the road network is n hops.

The proximity between road segments is defined based on
their topological distance and therefore all n-hop neighbor-
ing segments of a segment form its n-hop neighboring set.
Since there may be multiple road network paths between two
segments, a segment may belong to multiple n-hop neigh-
boring sets of another segment. The n-hop neighboring set
for a single segment si is represented as Nn

i and the n-hop
neighboring set for a cloaking segment set C = {sa, sb, sc}
is defined as the n-hop global neighboring set, represented
as Gn

C = {si | si ∈ Nn
a

⋃
Nn

b

⋃
Nn

c , si 6∈ C}. Therefore, the
transition matrix used in this algorithm is formed by C and
its global neighboring set Gn

C . Segments from global neigh-
boring set with fewer hops are put into the global neighbor-
ing set in order until the number of segments in the global
neighboring set is same as that of C, |Gn

C | = |C|. For each
transition, a matrix M with X columns and Y rows is built,



(a) Model (b) Transition matrix (c) Transition graph

Figure 7: Reversible global expansion

where X = |Gn
C | and Y = |C|. Based on the segment length,

the elements of Gn
C and C are sorted and mapped to columns

and rows respectively. Here, if the first column and first row
of M are numbered zero, then transition values can be cal-
culated by M(x, y) = (x+ y) mod X, where x and y are the
number of columns and rows respectively. Once the transi-
tion matrix is dynamically formed, the pick value, denoted
by p, (calculated as p = R mod X, where R stands for the
pseudo-random number), uniquely picks the forward transi-
tion among the set of candidate transitions for the currently
formed cloaking region.

An example of the global expansion scheme is presented
in Figure 7(a). We assume that the actual user asks for
three privacy levels with (δ1k) and (δ2k) for L1 and L2 re-
spectively. For this example, we assume that the currently
formed cloaking region is C = {s7, s8, s9} and it is close to
(δ1k), with Gn

C = {s4, s5, s11}. The size of Gn
C can be larger

for large n, but we just need the first three in this case to
guarantee |Gn

C | = |C|. To select the next segment from Gn
C

with the pick value generated using the key for level 1, L1,
a transition matrix is built as discussed above. The transi-
tion matrix is shown in Figure 7(b) and the corresponding
transition graph is shown in Figure 7(c), where the arrow
lines stand for forward transitions and the values represent
the transition values. For this example, if the last selected
segment is s8, since X = 3 and y = 0, the pick value will be
computed as p = (R mod 3) and for R = 7, we will get p = 1.
Therefore, based on the graph, the transition from s8 with
value 1 points to s5. After adding the segment correspond-
ing to this forward transition, the privacy requirement for L1

may be met, however, the privacy requirements for L2 may
require adding more segments. In this case, the anonymiza-
tion process changes the anonymization key to Key2 and the
process continues to pseudo-randomly expand until (δ2k) is
met. In the de-anonymization process, it is straight-forward
to see that users can de-anonymize the cloaking region if
they have access to Key2 in order to access the location in-
formation entitled to users at level, L1. By removing the
last selected segment from the current cloaking region, the
remaining cloaking region can be used to build the same
transition matrix and transition graph and since no colli-
sion exists in this approach, the backward transition can be
uniquely determined by finding the forward transition that
shares the same transition value as the generated pick value.

3.2 Reversible pre-assignment-based local ex-
pansion

Similar to the global expansion scheme, the reversible pre-
assignment-based local expansion algorithm also starts the

expansion from the segment containing the actual user. It
keeps adding new segments until the privacy requirements of
the user-defined profile is satisfied. As mentioned before, the
transition values in the pre-assignment-based approach are
assigned to both forward and backward transitions. How-
ever, unlike the reversible global expansion algorithm, where
the forward transitions represent segments within the cur-
rently formed cloaking region to segments within the can-
didate expansion region, the forward transitions in the pre-
assignment-based approach represent transitions from the
previously added segment to a set of candidate segments
for expansion. The candidate segments for expansion in the
global scheme are neighboring segments of the entire cur-
rently formed cloaking region, however, the candidates for
the local expansion scheme include only the neighboring seg-
ments of the previously added segment in the cloaking area.

The transition pre-assignment algorithm first determines
the number of candidate transition segments for each tran-
sition. The algorithm ensures that for all the forward and
backward transitions, this number is the same in order to en-
sure that the overall number of forward transitions is equal
to that of backward transitions. For example, if the number
of candidate transition segments is chosen as 3, the required
transition values assigned to candidates should be 0, 1 and
2. Therefore, for each segment within the map, the three
transition values need be carefully assigned to avoid colli-
sions as discussed before. To build the transition graph,
the algorithm establishes three tables namely a neighboring
table, an encoding table and a decoding table. The encod-
ing and decoding tables contain the transition values for the
forward and backward transitions and the neighboring ta-
ble contains the road network adjacency information for all
the segments in the road network. For each segment si,
its neighboring segments are recorded as a row in the or-
der of topological distance. That is, the entries start from
N1

i and end to Nm
i where m is the allowed maximum num-

ber of hops in a single expansion step. In this algorithm,
the encoding table and decoding table are established to-
gether progressively to guarantee collision-free transitions
for both forward and backward transitions. Concretely, the
encoding and decoding tables are built by following three
rules: (i) the candidates for each transition can be selected
in a flexible manner, however, if a neighboring segment of
si cannot be added into its encoding table due to collisions,
the next neighboring segment should be considered. Given
that the neighboring segment set is built based on the n-hop
neighboring segment sets, the encoding and decoding tables
bounded by the number of candidates can be always fully
established, (ii) the transition values of any transition pair
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Figure 8: Reversible pre-assignment-based local expansion

should be equal. For example, if sj is added into the en-
coding table of si, then the transition value of ft{si → sj},
which is 0, should be same for si as well in the decoding
table of sj in order to guarantee that the transition value
of bt{sj → si} is 0. (iii) Once a certain transition value, v
is assigned to bt{sj → si}, all the forward transitions from
other segments except si to sj cannot be assigned the same
transition value, v. The encoding and decoding tables are
gradually filled, for each neighboring segment, the encoding
table shows a set of the remaining positions, denoted by E,
and the decoding table also provides a set of remaining po-
sitions, denoted by D. Only if E ∩D 6= ∅, the neighboring
segments are chosen to update the two tables.

An example with 6 segments is shown in Figure 8(a) where
the number of candidates for each transition is set to 3. The
corresponding encoding table is shown in Figure 8(b), which
can be used to easily deduce the decoding table as the de-
coding table is a matrix transposition of the encoding table.
Here, the candidate with one segment belongs to one-hop
neighboring set N1

i while the candidates with two and three
segments belong toN2

i andN3
i respectively. The final transi-

tion graph generated from the encoding and decoding tables
is shown in Figure 8(c) where the transition values on the
left stand for the forward transitions and the ones on the
right represent the backward transition values. Once the
pre-assigned transition graph is established, for any future
cloaking requests, the algorithm proceeds to generate pick
values pseudo-randomly and chooses the transitions that
are guaranteed to be collision-free based on pre-assignment.
Similarly, the de-anonymization process becomes straight-
forward, involving the removal of the road segments based
on the backward transitions from this pre-assigned collision-
free transition graph.

4. EXPERIMENTAL EVALUATION
In this section, we experimentally evaluate the perfor-

mance and privacy offered by the proposed ReverseCloak
algorithms. Before reporting our results, we first briefly de-
scribe the experimental setup.

4.1 Experimental setup
To simulate and compare different anonymization schemes,

we use GTMobiSim mobile trace generator for road network
[13]. Our experiments were designed based on a real road
network map of northwest part of Atlanta, involving 6979
junctions and 9187 segments, obtained from maps of Na-
tional Mapping Division of the USGS. There are 10,000 cars
randomly generated along the roads based on Gaussian dis-
tribution. Once a car is generated, the associated destina-

tion is also randomly chosen and the route selection is based
on shortest path routing.

In our experiments, four different anonymization schemes
are implemented: Random Sampling (RS), Star-based road-
network expansion (SE)[27], a candidate representative of
existing road network-based expansion schemes, Reversible
Global Expansion (RGE) and Reversible Pre-assignment-
based Local Expansion (RPLE). The first two algorithms
(RS and SE) are irreversible while the two ReverseCloak
algorithms proposed in this paper (RGE and RPLE) are
reversible and support multi-level privacy control. All the
schemes are implemented in Java with the help of GTMo-
biSim.

4.2 Experimental results
Our experimental evaluation consists of three parts. First,

we evaluate the performance of the selected cloaking algo-
rithms by measuring anonymization time, de-anonymization
time, relative spatial resolution and success rate. We collect
and compare the results by varying user-defined parameters,
δk and σs. Then, we evaluate the performance of the algo-
rithms under multilevel privacy scenarios. Finally, we evalu-
ate the effectiveness of these algorithms in terms of resilience
to replay attack by measuring entropy towards varying δk
and σs. Our results show that the proposed algorithms have
good resilience towards replay attacks and effectively sup-
port multilevel privacy requirements while still maintaining
good performance and efficiency.

4.2.1 Varying User-defined k-anonymity
This set of experiments evaluates the performance of the

algorithms by varying the anonymity level δk as

δk = 10i for i = 1, 2...10

Here, the spatial tolerance, d, is set as a function of the
anonymity level, δk such that

d = 400
√
i for i = 1, 2...10

where the unit is meter(m). Therefore, the maximum allow-
able special region is a circular region with the user’s actual
location as the center and the spatial tolerance, d as the ra-
dius. We also set 5% standard deviation for each d. For this
experiment, we consider only two privacy levels and for the
multi-level reversible techniques, this privacy requirement
represents the privacy levels of the least and most privileged
users.

We compare the average anonymization time for the var-
ious approaches in Figure 9(a). In Figure 9(a), we find that
RPLE is fastest in the anonymization phase among all the
compared techniques. The reason is that the assignment of
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Figure 10: Performance with Varying Spatial Tolerance

transition values in the RPLE scheme has been done apriori
and at the time location cloaking, the transition graph is
directly looked up as compared to dynamically computing
it on the fly in the RGE approach. Also, for all the algo-
rithms, the anonymization time is longer for larger δk as
stricter privacy requirements result in cloaking areas with
more segments and it therefore requires addition of more
segments into the cloaking area.

Figure 9(b) shows the impact of varying δk on the de-
anonymization time. Since only ReverseCloak algorithms
can perform de-anonymization of the cloaked region, RS
and SE are not considered for this experiment. For both
RGE and RPLE, the variation trends of de-anonymization
time are similar as the anonymization time in Figure 9(a)
as the computational complexity of the de-anonymization
process is similar to that of the anonymization process. In
both anonymization and de-anonymization phases, RPLE is
faster than RGE because RPLE prevents collision in a apri-
ori manner through its intelligent pre-assignment of forward
and backward transitions while RGE prevents collision by
dynamically assigning the transition values during location
cloaking.

Figure 9(c) displays the impact of changing the anonymity
level, δk on relative spatial resolution (RSR) which is de-
fined the ratio of the size of the obtained cloaking area to
size of the maximum allowable spatial area, specified by the
spatial tolerance level, d. Here, RS has the lowest relative
spatial resolution (RSR) as its candidate expansion region
covers all the segments within the maximum allowable spa-
tial area, thus making the size of the cloaking area close to
the maximum spatial area even when δk is small. We also
find that the relative spatial resolution of SE and RGE is
larger than RPLE as the cloaking segments in SE and RGE
are selected from a global neighboring segment set, provid-
ing a tighter structure as compared to a local neighboring
set in the RPLE approach.

In Figure 9(d), we compare the success rate of anonymiza-
tion process with varying δk value. The success rate rep-

resents the fraction of the cases where the cloaking algo-
rithm is able to provide a cloaking region meeting the pri-
vacy requirements in terms of δk. We find that all the
algorithms have a high success rate indicating that most
of the anonymization requests are cloaked successfully to
meet the privacy requirements. We also find that for all the
schemes, the success rate decreases slowly when δk becomes
very large. This is because a larger δk requires a larger cloak-
ing area, which is harder to be satisfied by a given spatial
tolerance. However, we note that even for higher anonymity
levels, such as δk = 100, the success rates of both RGE and
RPLE are high and are close to 90%. RS keeps the highest
success rate here as its failure occurs only when the total
number of users within the maximum spatial area is smaller
than δk. In fact, the success rate of the RS scheme defines
the theoretical maximum success rate of the cloaking process
for the given anonymization requests. We also note that SE
and RGE have slightly higher success rate than RPLE as
their cloaking regions have higher density and smaller size,
thus being easier to meet the spatial tolerance requirement.

4.2.2 Varying User-defined Spatial Tolerance
To test the impact of spatial tolerance, the anonymity

level δk is set to be 30 with standard deviation of 10. The
spatial tolerance values, σs, are chosen as 600m, 800m, 1000m
and 1200m as the mean values with 5% standard deviation.

Figure 10(a) shows that all the algorithms experience an
increase in cloaking time as σs increases. With an increase
in the maximum spatial region size, the expansion process in
the cloaking schemes have more candidate segments for ex-
pansion, causing an increase in the anonymization time. Fig-
ure 10(b) indicates that the de-anonymization time for the
reversible algorithms follow a similar trend as the anonymiza-
tion time. In Figure 10(c), we find that all techniques except
RS have higher relative spatial resolution as the RS scheme
attempts to distribute the cloaking segments throughout the
entire maximum spatial cloaking area. In Figure 10(d), we
measure the influence of spatial tolerance on the obtained
success rate. We find that the success rate of all the algo-
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Figure 11: Multilevel Privacy Protection

rithms grows with increase in σs. The increments for RS
and RGE are not very significant as their initial success rate
for 600m spatial tolerance itself is higher. We again note
here that the success rate of the RS approach is a theoreti-
cal maximum as the RS scheme would fail only when there
are less than δk users within the maximum allowable spa-
tial region. However, for the other approaches, we find that
an increase in spatial tolerance has a slight increase in the
success rate. Higher spatial tolerance provides a larger can-
didate expansion region and permits larger cloaking area,
so the privacy requirements of a query is much easier to
be achieved. Besides that, since the failures mostly occur
where the density of mobile users is low, with higher spatial
tolerance, part of the request that were dropped with lower
spatial tolerance may now become successful.

4.2.3 Multilevel Privacy Protection
To evaluate the multilevel location privacy performance,

relative anonymity level (RAL) is measured. The relative
anonymity in a multi-level privacy scenario refers to the ratio
of the obtained anonymity to the anonymity level entitled
to a given access privilege level. Figure 11(a) and Figure
11(b) show the average relative anonymity of the cloaking
techniques with respect to δk and σs . In Figure 11(b), the
requirement of δk is set as 30. In both Figure 11(a) and Fig-
ure 11(b), we assume that there are six access privilege lev-
els with uniformly distributed requirement of δk. The users
with lowest privilege have access to the cloaking region with
the maximum δk while users with the highest privilege have
access to the location with the lowest anonymity. A good
cloaking algorithm should ensure that the RAL is close to
one for all access privilege levels, thereby providing exactly
the anonymity level required for that level. We notice that
existing irreversible algorithms result in very large RAL due
to their lack of reversibility. In contrast, ReverseCloak al-
gorithms achieves a RAL close to one for all privilege levels
ensuring that users in each privilege level obtain the infor-
mation at the level of anonynmity and accuracy entitled to
them, thus protecting the multilevel privacy successfully.

4.2.4 Attack Resilience
This set of experiments evaluate the effectiveness of the

algorithms in terms of their resilience to replay attacks.
For replay attack, average information entropy is calculated
as the metric to evaluate the uncertainty of the attacker:
E = −

∑
Ai logAi, where Ai is the associativity for each

segment. Here, higher entropy means higher randomness
and higher uncertainty for the attacker in inferring the true
location of the user, thus leaking out less information and
providing better privacy protection. Figure 12(a) shows av-
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erage entropy of the replay attack with varying δk. Here, RS
keeps the highest entropy for the whole range as its cloak-
ing process is completely random and is therefore the most
resilient to replay attacks. We also find that the entropy of
SE is high as the road network expansion has a good de-
gree of randomness, however, both RGE and RPLE provide
even higher entropy, indicating that the randomness of the
expansion process in RGE and RPLE is much higher than
that of the SE approach. In the RGE and RPLE schemes,
the randomness of both these schemes are only a little lower
than the RS scheme. Figure 12(b) shows the average en-
tropy with varying σs. Here, the anonymity requirement,
δk is set as 30. Compared with the previous case, the en-
tropy for all the algorithms is nearly constant suggesting
that larger spatial tolerance does not have impact on the
attacker’s uncertainty. Our final observation here is that in
general, higher δk provide higher entropy for all the algo-
rithms, illustrating that a cloaking area with more segments
provides better protection.

5. RELATED WORK
Location privacy has been an active area of research in the

past. Broadly, location privacy protection mechanism can
be classified into policy-based protection techniques and in-
ference prevention-based techniques. Policy-based schemes
give users permission to define privacy rules according to
the service request, thus getting users’ active participation.
The inference-prevention schemes are more focused on pre-
vention by protectively processing and perturbing the lo-
cation information prior to disclosure. The latter can be
further broken down into location data perturbation tech-
niques represented by [1, 10, 19, 28] and trajectory infer-
ence prevention techniques represented by [5, 4, 21, 22,
20]. Location data perturbation schemes consists of pertur-
bation through dummies [15], spatial location cloaking [3,
7, 10, 11, 14, 19, 28] and encryption-based techniques [1].
Recent work has studied the location privacy problem by
perturbing the location information based on differential
privacy constraints prior to disclosure [2, 6]. By replac-
ing the real location information with dummies, location
privacy can be protected, but the safety and service qual-
ity is dependent on the distance between the two positions.
Encryption-based techniques provide strong confidentiality
properties, however, an encrypted location has very little
utility compared to a perturbed location which can be effec-
tively used for query processing. In the past, there has been
many works related to spatial location cloaking. To proac-
tively protect user’s location privacy, k-anonymity, which
was proposed for sensitive data protection [26], was ap-
plied to protect location privacy in the context of location-



aware systems [12]. Since then, the techniques related to
spatial cloaking has been developing rapidly. CliqueCloak
algorithm proposed in 2004 considered the individual user’s
personalized privacy requirement for the first time [10]. A
grid-based cloaking framework, Casper further extended this
model with a privacy-aware query processor [19]. Subse-
quently, a directed-graph based cloaking algorithm was pro-
posed to improve the success rate of anonymization [28] and
the Hilbert Cloak algorithm uses a Hilbert curve to fill the
whole area and track users [11]. While these techniques
were designed for mobile users traveling on Euclidean space,
recent work has considered the location cloaking problem
under a constrained road network model [8, 27, 30]. As we
can observe, most existing location privacy protection mech-
anisms have focused on developing unidirectional location
perturbation approaches that does not allow fine granular
information to be inferred even when some users have the
privileges to access it. The approach presented in [17] intro-
duces a de-anonymizable location perturbation scheme by
recording some additional information as metadata during
the anonymization process. However, such an approach re-
quires the overhead of maintaining and managing the addi-
tional metadata, without which, the perturbed data cannot
be reduced in privacy levels. In comparison, to the best
of our knowledge, the work presented in this paper is the
first comprehensive set of location privacy protection mech-
anisms aimed at providing a multi-level reversible location
privacy model to support privacy-preserving exposure of lo-
cation information in access controlled environments.

6. CONCLUSION
In this paper, we presented ReverseCloak, a new class of

reversible location privacy protection mechanisms for sup-
porting multi-level privacy requirements in access controlled
environments. We argue that conventional location privacy
protection techniques are not inherently designed to support
reversible privacy and we proposed two reversible location
cloaking mechanisms namely (i) reversible dynamic global
expansion scheme and (ii) reversible pre-assignment-based
local expansion technique that effectively support multi-level
privacy, allowing users with higher privileges to obtain finer
information through reduced anonymity levels. Extensive
experiments conducted on GTMobiSim show that the pro-
posed techniques are efficient, scalable and achieve the mul-
tilevel functionality through their reversibility property. Our
ongoing work is focused on applying the principles and tech-
niques developed in this work to protect multi-level privacy
for continuous location-based services that require continu-
ous exposure of location information as compared to one-
time exposure in the case of snapshot queries.
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